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Résumé

Dans cette thése, nous étudions les théories étroitement liées du controle et les
propriétés de la continuation unique, pour des équations et systémes des ondes
linéaires. Les résultats principaux proviennent des travaux de l'auteur:

1. Jingrui Niu. Simultaneous Control of Wave Systems. SIAM J. Control
Optim., 59(3):2381-2409, 2021

2. Pierre Lissy and Jingrui Niu. Controllability of a coupled wave system with
a single control and different speeds. preprint, 2021

Dans (1), nous avons étudié la controlabilité simultanée des systémes des ondes
dans un domaine ouvert de R?. Nous obtenons un résultat de controlabilité partielle
sur un espace co-dimensionnel fini pour des équations d’onde couplées par une
seule fonction de controle. Pour la propriété de continuation unique des fonctions
propres, nous avons donné un contre-exemple pour montrer que dans certaines
métriques, la propriété de continuation unique n’est pas vraie. De plus, nous avons
étudié différentes conditions pour garantir la propriété de continuation unique.
Nous avons étudié également notre résultat au cas de coefficients constants et
éventuellement de fonctions de controle multiples. Dans ce contexte, nous avons
prouvé que la propriété de controlabilité est équivalente a une condition de rang
de Kalman appropriée.

Dans (2), nous avons étudié un probléme de controlabilité exact dans un do-
maine ouvert 2 de R?, pour un systéme des ondes couplées, avec des vitesses
différentes et une seule commande agissant sur une sous-ensemble ouvert w satis-
faisant la condition de controle géométrique et sur une seule vitesse. Les actions
pour les équations des ondes avec la deuxiéme vitesse sont obtenues par un terme
de couplage. Tout d’abord, nous construisons des espaces d’états appropriés avec
des conditions de compatibilité associées a la structure de couplage. Deuxiéme-
ment, dans ces espaces bien préparés, nous prouvons que le systéme des ondes
couplées est exactement controlable si et seulement si la structure de couplage
satisfait a une condition de rang de Kalman de 'opérateur.
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Chapter 1

Introduction(francais)

1.1 Motivation

La controlabilité des équations d’onde est un sujet de recherche classique dans la
théorie du controle et dans ’analyse des équations aux dérivées partielles. Il existe
une grande littérature sur la controlabilité des équations des ondes linéaires. L’un
des meilleurs résultats sur ce sujet a été obtenu par Bardos, Lebeau et Rauch
dans leur article [10], ou ils ont introduit la condition de controle géométrique et
présenté I'application de I'analyse microlocale au sujet. On peut aussi se référer a
l'article [14] de Burq et Gérard et a article [12] de Burq pour des améliorations
ou des démonstrations plus simples. Ces résultats forment un contexte de base et
fournissent également la stratégie principale pour nous d’étudier la controlabilité
des équations des ondes.

Comme nous pouvons le voir, pour une équation des ondes scalaire, la controla-
bilité exacte est bien connue. Il existe une large littérature sur la contrélabilité
d’une équation des ondes scalaire a travers différentes approches telles que [10]
en utilisant I'analyse microlocale comme nous l’avons mentionné précédemment,
[38, 29] en utilisant des multiplicateurs, [25, 11| en utilisant des estimations de
Carleman, ou une preuve complétement constructive [30], etc.

Bien que nous ayons maintenant une meilleure compréhension de la controlabil-
ité d'une équation des ondes scalaire, la controlabilité des systémes des ondes n’est
toujours pas totalement comprise. A notre connaissance, la plupart des références
concernent le cas de systémes avec le méme symbole principal. Alabau-Boussouira
et Léautaud [5] ont étudié la controlabilité indirecte de deux équations des ondes
couplées, dans lesquelles leur résultat de controlabilité a été établi en utilisant
une méthode d’énergie multi-niveaux introduite dans [2], et également utilisé dans
[3, 4]. Liard et Lissy [37|, Lissy et Zuazua [40] ont étudié¢ I'observabilité et la
controlabilité des systémes des ondes couplées sous la condition de rang de type
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1.2. GENERALITES

Kalman. De plus, nous pouvons trouver d’autres résultats de controlabilité pour
les systémes des ondes couplées, par exemple, Cui, Laurent et Wang [19] ont
étudié I'observabilité des équations d’onde couplées par des termes d’ordre zéro ou
du premier ordre sur une variété compacte. Cependant, lorsque I'on considére la
controlabilité du systéme des ondes couplée a des vitesses différentes, il y a trés
peu de résultats.

Par contre, compte tenu de la contrélabilité d’un systéeme parabolique, nous
constatons qu’il n’y a pas de différences entre le couplage avec la méme vitesse
et des vitesses différentes (par exemple, voir [6]). Cela nous motive également a
étudier les résultats sur la controlabilité du systéeme des ondes a différentes vitesses.

Dans cette thése, le principal modal étudié est I’équation d’onde sous la forme
suivante. Soit  C R? d € N*, un domaine borné et lisse. Pour les constantes
positives «a et 3, soit k;j(x) : @ — R, 1 <14, j < d des fonctions lisses qui satisfont:

kz](x) O./|§|2 Z kzy 516] < B|€|2 Vz € \V/f S Rd (111)

1<i,j<d

Supposons K (z) est la matrice symétrique définie positive des coefficients k;;(x).

De plus, nous définissons la fonction de densité x(x) = m On définit égale-

ment le Laplacien par Ag = ﬁdiv(m(w)Kv-) sur {2 et l'opérateur d’Alembert
Ok = 02 — Ak sur R; x Q. Nous considérons une équation d’onde non homogene
avec un terme source f:

Ogu = f, (1.1.2)

avec conditions initiales:

=g = u°, Oyt y—o = u'. (1.1.3)

1.2 Généralités

Dans cette section, nous présenterons quelques aspects de base du probléme de
controle des équations d’onde. Nous supposons que w est un sous-ensemble ouvert
de €2. Nous considérons le probléme de contrdlabilité intérieure pour 1’équation
des ondes suivante:

Oxu = f1,, dans |0, T[x€2,
u=0 sur |0, T[x09, (1.2.1)
ulimo = u®(2), Oyulimo = ul(2),

ou f est une fonction de controle avec son support localisée dans le sous-domaine
w.




CHAPTER 1. INTRODUCTION(FRANGCAIS)

Il est bien connu que l'’équation d’onde modélise de nombreux phénoménes
physiques tels que les petites vibrations des corps élastiques et la propagation du
son. Par exemple, (1.2.1) fournit une bonne approximation pour les vibrations
de faible amplitude d’une corde élastique ou d’'une membrane flexible occupant la
région () au repos. La commande f représente alors une force localisée agissant
sur la structure vibrante.

De plus, puisque I’équation d’onde est I'équation hyperbolique la plus perti-
nente. Par I'étude de 1’équation d’onde, il nous aide & comprendre comment les
propriétés des équations hyperboliques agissent sur les problémes de controle.

Il est donc intéressant et important d’étudier la controlabilité de I'équation
d’onde comme 'un des modeéles fondamentaux de la mécanique du continuum et,
en méme temps, comme l'une des équations les plus représentatives de la théorie
du controle des équations aux dérivées partielles.

1.2.1 Controlabilité

Dans cette section, nous présenterons plusieurs types différents de controlabilité
pour l'équation d’onde (1.2.1).

Définition 1.2.1 (Controlabilité). Let T' > 0.

1. (Controlabilité exacte) On dit que l’équation d’onde (1.2.1) est exactement
contrélable dans Hy x L* au temps T si pour toutes données initiales (u°, u') €
Hgj x L* et toutes données cibles (a°,a') € Hy x L?, il existe un controle
[ € L*(]0,T[xw) tel que la solution de (1.2.1) avec les données initiales
(u]i=0, Opu|i=0) = (u°, ut), satisfait (u|=7, Opuli=7) = (0°,a').

2. (Controlabilité a zéro) On dit que I’équation d’onde (1.2.1) est contrélable a
zéro dans H} x L? au temps T si pour toutes données initiales (u®, u') € Hg x
L?, il existe un controle f € L*(]0, T[xw) tel que la solution de (1.2.1) avec
les données initiales (uli=o, Opuli=o) = (u°,u'), satisfait (u|i=r,Opuli=r) =

(0,0).

3. (Controlabilité o partir de zéro) On dit que ’équation d’onde (1.2.1) est con-
trolable a partir de zéro dans H} x L? au temps T si pour toutes données
cibles (u°,u') € H} x L?, il existe un contréle f € L*(|0,T[xw) tel que la
solution de (1.2.1) avec les données initiales (u|i—g, Oyuli—0) = (0,0), satisfait
(u|i=r, Opul=r) = (7107@1)-

4. (Contrélabilité partielle) Soit 1 un opérateur de projection défini dans Hy x
L?. On dit que Uéquation d’onde (1.2.1) est II—exactement contrélable dans
Hi x L? au temps T si pour toutes données initiales (u®,u') € H} x L* et

9



1.2. GENERALITES

toutes données cibles (@°,u') € HYx L?, il existe un controle f € L*(]0, T[xw)
tel que la solution de (1.2.1) avec les données initiales (uli—q,Opuli—o) =
(u®, ub), satisfait T(u|i—r, Opuli=r) = I(a°, a').

Remarque 1.2.2. En particulier, parce que [’équation d’onde est linéaire et réversible,
la contréolabilité exacte, la controlabilité a zéro et la contrélabilité a partir de zéro
sont équivalent (voir [17, Theorem 2.41]).

1.2.2 Condition de Kalman

Dans cette section, nous rappelons quelques conditions de rang de Kalman intro-
duites dans la littérature des systémes paraboliques couplés. Tout d’abord, nous
rappelons la condition de rang de Kalman pour la controlabilité des équations
différentielles ordinaires autonomes linéaires (voir par ezemple [27]).

Définition 1.2.3 (Condition de rang de Kalman). Soit m, n deux entiers positifs.
Supposons A € M, (R) et B € M,,.»(R). Nous introduisons la matrice de Kalman
associée a A et B définie par [A|B] = [A"'B|---|AB|B] € My um(R). On dit
que (A, B) satisfait la condition de rang de Kalman si [A|B] est une matrice de
plein rang.

Cette condition de Kalman pour la controlabilité est introduite dans [28|, qui
est un critére pour un systéme linéaire autonome & = Ax 4+ Bu avec un controle
u € L*(|Ty, T1[,R™). De plus, nous remarquons que la condition de rang de
Kalman est une condition équivalente pour la contrélabilité du systéme linéaire
autonome & = Az + Bu (on peut se référer a [17, Remarque 1.17]).

Définition 1.2.4 (Opérateur de Kalman). Supposons que X € R™" and Y €
R™ ™ De plus, soit D € R™™ une matrice diagonale. Alors, l'opérateur de
Kalman associée a (—DA+X,Y") est une opérateur # = [—DA+X|Y|: D(X') C
(L?)"™ — (L)), avec le domaine de l'opérateur D(F) = {u € (L*)"™ : X 'u €
(L*)"}.
Définition 1.2.5 (Condition de rang de l'opérateur de Kalman). On dit que
lopérateur de Kalman £ satisfait la condition de rang de l'opérateur de Kalman
si Ker(£™) = {0}.

La condition de rang de 'opérateur Kalman peut étre reformulée comme suit.

Proposition 1.2.6. [6, Proposition 2.2] La condition de rang de l’opérateur Kalman
est equivalent a la condition de rang de Kalman spectral suivante:

rang[(AD + X)|Y] = n,VX € o(=A).

En particulier, soit C > 0 une constante et D = Cld,,. Alors, La condition de rang

de l'opérateur Kalman est equivalent a la condition de rang de Kalman donnée par
Définition 1.2.3 (voir [6, Remark 1.2]).

10
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1.2.3 Meéthode d’unicité de Hilbert

Pour ’équation (1.2.1), nous introduisons 1’équation adjointe comme suit:

Ogv = 0 dans |0, T[x€2,
v=0 sur]0,T[x0Q, (1.2.2)
Vo =0°(2),  Owli—o = v'(2),

Définition 1.2.7. On dit qu’une équation d’onde homogéne (1.2.2) est observable
dans [0,T] x w s’il existe une constante C > 0 telle que chaque solution v €

C°0,T, L) N CYH0, T, H™Y) de I’équation d’onde homogéne (1.2.2) satisfait a

T
C/ / kv dadt > |[0°)]22 + [|vt]|%-. (1.2.3)
0 w

Ici, I'inégalité (1.2.3) est appelée I'inégalité d’observabilité pour I’équation ad-
jointe.

Selon la méthode de 1'unicité de Hilbert de J.-L. Lions [38], la propriété de con-
trolabilité est équivalente a une inégalité d’observabilité pour le systéme adjoint.

Théoréme 1.2.8. L’équation d’onde (1.2.1) est controlable & zéro si et seulement
si [’équation adjointe (1.2.2) est observable dans [0,T] X w.

L’idée de preuve de ce théoréme est la méthode d’unicité de Hilbert, qui
établit la dualité entre la controlabilité a zéro et 'observabilité. Nous définissons
I'opérateur R par

R:f e L*]0,T[xw) — (u’,u') € H} x L? (1.2.4)

ot u est la solution de (1.2.1) avec (u|ir, Osult=r) = (0,0). D’autre part, nous
définissons 'opérateur S par

St (%0 e L2 x H = vl p(t)1u(2) € L2(]0, T[xw), (1.2.5)

ou v résout I’équation adjointe (1.2.2). Par conséquent, la controlabilité & zéro est
la surjectivité de 'opérateur R et l'observabilité est la coercitivité de 'opérateur
S. Le Théoréme 1.2.8 implique la dualité R* = S.

Remarque 1.2.9. La coercivité de S implique son injectivité, c’est-a-dire, un
résultat de la continuation unique de (1.2.2) : si v résout (1.2.2) et s’annule dans
[0,T] x w, alors v =0.

11
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1.2.4 Condition du controle géométrique

Afin d’étudier I'inégalité d’observabilité, une méthode classique consiste a suivre
le processus abstrait en trois étapes initialisé par Rauch et Taylor : [46](voir
également [10]). Il peut étre détaillé comme suit :

e Premiérement, obtenir I'information microlocale sur la région observable.
Montrer par contradiction et on obtient différents types de convergence dans
le sous-domaine |0, T[xw et le domaine |0, T[x€2.

e Deuxiémement, utilisez la mesure de défaut microlocale (qui est due & Gérard
[23] et Tartar [47]), ou le théoréme de propagation des singulaties (voir |26,
Section 18.1] ) pour prouver une estimation d’observabilité faible :

T
o012 + [t 1By < O / / o Pdedt + [0)3 + [0} ps):
0 w

e Troisiémement, utilisez les propriétés de continuation unique des fonctions
propres pour obtenir I'inégalité d’observabilité originale (1.2.3).

Pour les estimations a haute fréquence, une condition trés naturelle consiste a
supposer que 1’ensemble de controle satisfait a la condition de controle géométrique

(CCG).

Définition 1.2.10. Pour un sous-ensemble w et T > 0, nous dirons que la
paire (w, T, pg) satisfait la condition de controle géométrique (CCG) si tout rayon
bicharactéristique générale de px rencontre w en un temps t < T, ou px est le
symbole principal de O .

Nous donnerons la définition des bicharactéristiques dans la 1.3.1. Cette con-
dition a été soulevée par Bardos, Lebeau et Rauch [9] lorsqu’ils ont considéré la
controlabilité d’'une équation scalaire a ondes et est maintenant devenue une hy-
pothése de base pour la controlabilité des équations & ondes. Dans [14], les auteurs
montrent que la condition de controle géométrique est une condition nécessaire et
suffisante pour la controlabilité exacte de I’équation d’onde avec conditions de
Dirichlet et des controles aux limites continues.

1.2.5 Propriété de la continuation unique

Comme nous le savions, la propriété de la continuation unique n’implique pas la
controlabilité en dimension infinie. En effet, par exemple, sur une variété rieman-
nienne compacte, les valeurs propres du laplacien étant discrétes, le régime des
basses fréquences est engendré par un nombre fini de fonctions propres du lapla-
cien. C’est essentiellement 1'idée de I’argument unicité-compacité dans ’article de

12
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Bardos, Lebeau, et Rauch [38]. Cet argument rameéne 1'observabilité du régime des
basses fréquences a la propriété de la continuation unique des fonctions propres du
laplacien. C’est-a-dire, si u satisfait 1’équation,

—Au= A u,Ae€C (1.2.6)

et si ul, =0, a-t-on u = 0 dans Q7

Lorsque A est un opérateur différentiel a coefficients analytiques, Holmgren
a montré l'unicité de solution parmi les distributions. Le premier effort pour
supprimer 'analyticité est di & Carleman [16], qui a montré 1'unicité en supposant
que les caratéristiques de I’équation sont simples. Il y a beaucoup de litterature
sur l'inégalité de Craleman, par exemple, voir |7, ?].

1.3 Mesure de défaut pour I’équation des ondes

1.3.1 Préliminaires géométriques

Soit B = {y € R : |y| < 1} la boule unité de R? et localement on identifie
M = Q x R, avec [0,1[xB. Pour z € M = Q x R, on note z = (x,y),01
x € [0,1[ et y € B. De plus, z € IM = 09 X R; si et seulement si z = (0,y). Soit
R = R(z,y, D,) un opérateur pseudo-différentiel scalaire (C*°) tangentiel classique
de degré 2, auto-joint, défini au voisinage de [0, 1] x B, de symbole principal réel
r(x,y,n), on définit les fonctions ry et r; par

7"(.23', Y, 77) = TO(ya 77) +xr (y7 77) + O(332)
On supposera que la fonction homogéne de degré 2 en 7, r(x,y,n) vérifie

% # 0 pour (z,y) € [0,1[xB et n # 0.
Ui

Soitent également Qo(z,y, D) et Q1(z,y, D,) des opérateurs pseudo-différentiels
tangentiels classiques définis au voisinage de de [0,1] x B, de degrés respectifs 0
et 1, de symboles principaux ¢y et ¢;. On note P l'opérateur de degré 2:

P:(8§+R)+Qoax+Q1

Le symbole principal p de P est scalaire et vaut p = —£? + r(x,y,7n). Donc, on
décompose T*0M en 'union disjointe £ UG U H, ou

8:{7”0 <O},Q:{7“0:0},7-l:{7”0 >O}
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1.3. MESURE DE DEFAUT POUR L’EQUATION DES ONDES

On dit que p € & est elliptique, p € G est glissant et p € H est hyperbolique. On
note Char(P) la variété caractéristique de P par

Char(P) = {(z,y,&,m) € T'R™ |57 : € = (2,9, 1)}
Pour ’ensemble glissant G, on a la décomposition G = Uin G’, avec

G* ={(y,n) : ro(y,n) = 0,71(y,n) # 0},
gg = {(yan) : To(yﬂ?) = 0>T1(y>77) = O7H7“o(7al) 4 0}7

gk—i-?) = {(3/777) : To(yﬂ?) = 07H7z'0(r1) = O,Vj < kaHf0+1(rl) 7é 0}7

G = {(y,n) : ro(y,n) = 0, H (r1) = 0,5}

Ici, H,, est le champ de vecteurs hamiltonien de ro. De plus, pour G2, on note
G>* = {(y,n) : ro(y,m) = 0,£r(y,n) > 0}. Alors, G> = G>* UG*>~. On dit que
p € G>~ est strictement glissant et p € G>* est diffractif. Pour p € G7, on dit que
p est glisant d’ordre j.

Définition 1.3.1. On dit que 2 n’a pas de contact d’ordre infini avec ses tangentes
si il existe N € N telle que G = Uﬁ\; gl

Définition 1.3.2. On appelle bicaractéristique généralisée toute application con-
tinue v, de R dans T;M telle qu’en dehors d’un ensemble de points isolés I,
v(s) € T"M UG, sis € I, on a~(s) € H etsis ¢ I,y est différentiable
avec

1. ‘;—Z(s) = H,(y(s)) siy(s) € T*M U G**
2. Gh(s) = H_y,(7(s)) sin(s) € G\G>.

Remarque 1.3.3. Il est classique que les définitions que nous avons exprimées en
coordonnées sont intrinséques et que si £ n’a pas contact d’ordre infini avec ses
tangentes, par tout point py il passe une et une seule bicaractéristique généralisée
telle que v(0) = po. Voir [42, 43].

Pour plus de détails, voir [15] and [13].

1.3.2 Mesure de défaut

Dans cette section, nous allons donner deux approches pour construire la mesure
de défaut. La premiére est basée sur l'article de Gérard et Leichtnam [24] pour
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I'équation de Helmoltz et Burq [13] pour I’équation d’onde. L’autre suit I'idée
de P'article [31] de Lebeau et nous nous appuyons sur 'article [15] de Burq et
Lebeau pour la mise en place des systémes d’onde. Pour la premiére, on considére

(uF)gen C (L3 (RT;L3(2)))" une suite bornée d’élements de (L3, (R*; L*(Q2)))",

loc loc
qui satisfait
{Puk =o(1) g1,

(1.3.1)
Uk|aM = 0.

loc(RJr; L2(Rd)))n
le prolongement par 0 de u* & Pextérieur de Pouvert M. Suivant la [13, Section
1], nous avons 'existence de la mesure de défaut microlocale comme suit :

On suppose que la suite (u*) converge faiblement vers 0 et on note u, C (L2

Proposition 1.3.4. On peut donc, quitte a extraire une sous-suite lui associer
une mesure positive sur S*((RT x RY)) pu, vérifiant pour tout A € A

Jlim (Au®, u") 2 = (n, 0(A)), (1.3.2)
— 00 -

ot A est une espace des matrices n X n d’opérateurs pseudo-différentiels clas-
siques d’ordre 0, a support compact dans R* x R et o(A) est le symbole principal
d’opérateur A, qui est une matrice de fonctions lisses, homogénes d’ordre O dans
la variable &, c’est-a-dire une fonction sur S*((RT x R%)).

D’aprés [13, Théoréme 15|, nous avons la proposition suivante.
Proposition 1.3.5. La mesure de défaut y vérifie les propriétés suivantes:

e La support de la mesure p est inclus dans lintersection de la variété carac-
téristique de l’équation des ondes avec RT x Q:

supp(p) C Char(P) = {(t,z,7,&);2 € M, 7* = |¢[3}. (1.3.3)

e La mesure p ne charge pas l’ensemble hyperbolique dans OM :

w(H) =0.
e [n particulier, sin = 1, la mesure scalaire p est invariante le long du flot
bicaractéristique généralisé.

D’autre part, on note A une espace des matrices n x n d’opérateurs A de la
forme A = A; + A; ou A; est un opérateur pseudo-différentiel classique d’ordre 0,
a support compact dans M (i.e, vérifiant A; = pA;p pour un ¢ € C3°(M)) et ou
A; est un opérateur pseudo-différentiel tangentiel classique d’ordre 0, a support
compact dans M (i.e, vérifiant A; = pA,p pour un ¢ € C=(M)).
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1.3. MESURE DE DEFAUT POUR L’EQUATION DES ONDES

Remarque 1.3.6. On note le ﬁ_bre de cotangente compressée de Melrose par bT* M
et lappication canonique j:T*M s *T*M, défini par
i@, y,8n) = (x,y,2€,1).

On pose A o
Z = j(ChCLT(P)), Z = ZUj(T*M|z:0>,
et R o o
SZ = (2\M)R,, Sz = (Z\W)/R;.

Remarque 1.3.7. SZ et SZ sont les espaces quotients sphérique et des espaces
métriques localement compacts.

Pour A € A, avec le symbole principal a = (A), on définit

k(a)(p) = a(j " (p)).Vp € "T"M.

Donc, on obtient 'ensemble K = {x(a) : a = 0(A), A € A} C C°(SZ; End(C™)).
On notera M™ 'espace des mesures boréliennes p sur SZ, a valeurs hermitiennes

positives sur C". Une mesure y de M est donc un élément du dual de 'espace
CY(SZ; End(C™)) qui vérifie

(p,a) > 0,Ya € C°(SZ; End*(C")),Vu € M™,
ou End*(C") désigne 'ensemble des matrices n X n hermitiennes positives.

Proposition 1.3.8. Quitte a extraire une sous-suite de la suite (u*), il existe une
mesure 1 € M telle que
VAec A, lim (Au® u®) 2 = (u, k(o (A))). (1.3.4)

k—o0

Pour plus de détails, voir [15]. On considére S une hypersurface transverse
a le flot Melrose-Sjostrand sur SZ. Alors localement, SZ = R, x S ou s est le
parameétre bien choisi le long de le flot.

Lemme 1.3.9. La mesure p vérifie les propriétés suivantes: La support de la
mesure |1 est inclus dans SZ et il existe une fonction

(s,2) ERy x S+— M(s,z) € C"

qui est continue p-presque partout telle que la mesure P*u = M*uM défini pour
a€C%SZ) par
(M*uM,a) = (pn, MaM™)
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vérifie
d
—P* = 0.
dsP a

On dit que la mesure p est invariante le long du flot associé a M. De plus, la
fonction M est continue et le long de toute bicaractéristique généralisée la matrice
M est solution d’une équation différentielle dont les coefficients peuvent étre ex-
plicitement calculés en termes de géométrie et des différents termes de l’opérateur

P.

Pour I'¢quation différentielle de M, on peut voir [15, Section 3.2].

1.4 La controlabilité d’une équation d’onde scalaire

Dans cette section, nous donnons une preuve schématique de la contrélabilité d’une
équation d’onde scalaire telle que nous 'avons introduite en (1.2.1):

Ogu = f1, dans |0, T[x€2,
u=0 sur]0,T[x09, (1.4.1)
ul=o = u(x), Owuli=o = u'(z),

ott nous supposons que f € L?(]0, T[xw) et les données initiales (u®,u') € H} () x
L?(£2). Nous considérons la controlabilité a zéro. La preuve est basée sur les trois
étapes suivantes :

1. (Observabilité) En appliquant la méthode d’unicité de Hilbert, la propriété de
controlabilité est équivalente & une inégalité d’observabilité pour le systéme
adjoint. Ici, nous devons seulement prouver : 9C' > 0 tel que pour toutes
solutions de 1’équation adjointe :

Ogv = 0 dans |0, T[x€2,
v=0 sur|0,T[x05, (1.4.2)
Vim0 = (), O|i=o = v!(2),

on a

T
1001122 + [0 |5 < C/o /|v\2d:cdt. (1.4.3)

2. (Estimations a haute fréquence) Nous établissons d’abord une inégalité d’observabilité
faible comme suit :

T
||v0||%2+||v1||%{_lsc(/ / |v|2dxdt+||v°||z_l+||v1||%.1_2). (1.4.4)
0 w
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Nous prouvons cette inégalité par I'argument de contradiction. Supposons
que I'inégalité (1.4.2) soit fausse, il existe une suite (v*°, v*1)en dans L? x
H~! telle que

RO + [0 2 = 1, (1.45)
[0 12 -0 + [[o™H |52 — 0,k — oo
T
/ / [v* [2dxdt — 0,k — oo (1.4.7)
0 w

ot v* est la solution de (1.4.2) avec les données initiales (v%9 v*1). Par

conséquent, il existe une mesure de défaut microlocale i associée a la suite
bornée v*. D’aprés la section précédente, nous savons que j est invariant le
long du flot bicaractéristique généralisé. De plus, nous savons que fifjo 7{xw =
0 par (1.4.7). Par conséquent, on obtient = 0. En combinant avec la loi
de conservation de l’énergie de ’équation d’onde homogéne (1.4.2), il y a
une contradiction avec I’hypothése (1.4.5). Par conséquent, nous prouvons
I'inégalité d’observabilité faible (1.4.4).

. (Estimations a basse fréquence) Nous utilisons I'inégalité d’observabilité faible
(1.4.4) pour montrer I'observabilité originale (1.4.3). Nous argumentons
également par contradiction. Supposons que (1.4.3) soit fausse, alors, il
existe une séquence (v*9 v81) ey dans L2 x H~! telle que

08020 + o3 = 1, (1.4.8)
T
/ / 0¥ |*dzdt — 0,k — oo (1.4.9)
0 w
ot v¥ est la solution de (1.4.2) avec les données initiales (v5° v%1). D’apres

I'inégalité d’observabilité faible, on a

T
25 + [R5, < C (/ / |v¥ |*dzdt + ||vk’0||§{_1+||vk’1||§{_2) :
P (1.4.10)
Supposons que (vF0 v*1) — (19 vl) in L2 x H~! et v est la solution de
I'équation adjointe (1.4.2) avec les données initiales (v°,v!). Puisque L? x
H™' — H™' x H™? est compact, nous savons que |[v"0||%,_, + |[v"!]|%_, —
|[00][3,-1 + ||[v}]|3-2. En conséquence, si k tend vers 'infini, on obtient

1= ot

1< C (10Nl F-2) - (1.4.11)
On note
N(T) = {(w°,w") € L x H' 1 w(t,z) =0, pour t €]0, T,z € w}.
(1.4.12)
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Ici w est une solution de I’équation adjointe (1.4.2) avec les données initiales
(w® w'). Par conséquent, (v°,v') € N(T). Ensuite, nous prouvons que
N(T) = {0}. D’apres (1.4.4), nous savons que N (T') a une dimension finie.
On note &/ = ( g (1) ) Alors N(T) est stable sous lapplication de
—AK

o/ . Par conséquent, N (T') contient un vecteur propre de 7, c’est-a-dire que
I\ € Cet (¢o, 1) € H} x L? tel que

P\ _ Po
'Q{( 1 > - A( 1 ) , dans €, (1.4.13)
¢ = 0, dans w.

Ceci est équivalent a : pour A € C et ¢g € H,

_ )2
{ Apy = N\¢g, dans €, (1.4.14)

¢o = 0, dans w.

Il s’agit d’un probléme classique de continuation unique. En utilisant les esti-
mations de Carleman (voir [16]), nous obtenons que ¢y = 0. Par conséquent,
nous savons que N (T') = {0}. Par conséquent, nous avons (v°,v!) = (0,0),
ce qui est une contradiction avec ’hypothése (1.4.11). Par conséquent, nous

prouvons l'inégalité d’observabilité (1.4.3).

1.5 Les systémes des ondes couplées

1.5.1 Couplé a la fonction de controle

Dans cette section, on considére le probléme de controlabilité simultanée d’un
systéme d’onde avec différentes vitesses. On peut trouver ce résultat dans [44].

Un modéle simple

Nous présentons d’abord un exemple simple comme suit :

(02 = AJur = Fliga(®)1(o)

(atQ - 2A)u2 - f].]o,T[(t)lw(l’) (1 5 1)
u; =0 sur0,T[x0Q,5=1,2, e
u;(0,2) = u)(zx) € Hy, 0Owuy(0,2) =uj(z) € L?,j =1,2.

Remarquez que ces deux équations d’onde ont des vitesses différentes et que nous
utilisons la méme fonction de controle f € L?(]0, T[xw) pour controler les deux
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équations en méme temps. Pour 'exemple (1.5.1), en appliquant la méthode
d’unicité de Hilbert, nous devons seulement prouver une inégalité d’observabilité

2

T
SO0 2 + [l 3-) < C / / 0y + v 2t (15.2)

=1

pour les solutions (v1,v;) du systéme adjoint avec les données initiales (v?,v}) :
(83 — A)Ul =0
{ (2 — 2A)vy = 0 (15.3)

Pour prouver I'inégalité (1.5.3), nous estimons d’abord le régime a haute fréquence.
Puisque les deux équations d’onde ont des vitesses différentes, alors les manifolds
caractéristiques sont disjoints, ce qui implique que [y +vo| |2, & |[v1]|22 + |Jv2]|22
dans le régime haute fréquence. Avec I'application de la mesure de défaut, nous
savons que pour les hautes fréquences, observer la somme v; + vy est presque équiv-
alent & observer v; et vy. Ensuite, on s’intéresse au régime des basses fréquences. 11
est équivalent de considérer un probléme de continuation unique pour les fonctions
propres comme suit : seules les solutions nulles satisfont

—A¢p; = Aoy dans Q,
—2A¢p9 = APy dans €, (1.5.4)
01 + ¢ = 0 dans w.

Dans cet exemple, cette propriété est facile a prouver. Comme les fonctions propres
du laplacien sont analytiques, nous savons que ¢; + ¢o = 0 dans tout le domaine ).
Ensuite, en additionnant deux équations, on obtient que A¢s = 0. En combinant
avec la condition de Dirichlet, nous savons que ¢o = 0, ce qui implique que ¢ =
—@¢9 = 0. Par conséquent, on peut prouver ce probléme de contréle simultané. Par
conséquent, nous concluons trois caractéristiques de ce type de probléme :

1. Les équations d’onde ont des vitesses différentes alors que nous utilisons
la méme fonction de contréle pour controler toutes ces équations en méme
temps.

2. En considérant I'inégalité d’observabilité, nous utilisons la norme localisée
(restreinte dans le sous-domaine w) de la somme des solutions pour controler
la norme d’énergie totale des données initiales.

3. Nous avons besoin d’une propriété de continuation unique pour les fonctions
propres associées au systéme d’onde.
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Controéle simultané des systémes d’ondes

Dans mon article [44], on considére la controlabilité exacte sur un domaine ouvert €2
de systéemes des ondes avec des vitesses différentes, couplés par une seule fonction
de controle agissant sur un sous-ensemble ouvert w. Pour étre plus précis, on
considére la controlabilité intérieure simultanée pour le systéme des ondes suivant

/

DKlul = blf]_}ogﬂ[(t)]_w(l') dans ]O,T[XQ,
Or,ua = by f10,7((t) 1, (x) dans ]0,T[x€2,

; (1.5.5)
Oxk,tn = bn fLio ()1 (x) dans |0, T[x€2,

u; =0 sur0,7[x0Q,1<j<n,

\ u;(0,x) = u?(ac), Ou;(0,x) = u}(a:),l <j<n.

Ici, nous choisissons K;(1 < i < n) pour étre n différentes matrices symétriques
définies positives, ce qui est une généralisation de n différentes vitesses d’onde
de différentes métriques constantes. En outre, il est également important que la
méme fonction de controle f apparait dans toutes les équations. {b;}1<i<, sont n
coefficients constants non nuls. Nous pourrions considérer cet exemple comme un
cas particulier ou le couplage n’apparait que dans la fonction de controle. Pour ce
systéme, nous sommes en mesure de prouver le résultat de controlabilité partielle
comme suit :

Théoréme 1.5.1. Pour T' > 0, supposons que :
1. (w,T,pK,) satisfait CCG, i=1,2,--- ,n,
2. Ki > Ky>---> K, dans w,

3. Q n’a pas de contact d’ordre infini avec ses tangentes.

Alors, il existe un sous-espace de dimension finie E C (H}(Q) x L2())" tel que

le systéme (1.5.5) est P—exactement contrélable, o P est le projecteur orthogonal
sur B+,

Comme nous ’avons présenté précédemment, afin d’étudier les basses fréquences,
nous devons introduire la notion de continuation unique des fonctions propres.

Définition 1.5.2. On dit que le systéeme (1.5.5) satisfait a la propriété de contin-
uation unique des fonctions propres si la propriété suivante est vérifiée : YA € C,

la seule solution (¢y,- -+ ,¢,) € (H3 ()" de
_AK1¢1 = )\2¢1 dans €,
—Ag, 2 = N ¢y dans Q,

—Ag, ¢p = N2¢, dans §,
b1k + - + bk, =0 dans w,
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est la solution zéro (¢1,- -, ¢n) = 0.

Donc, on a la controlabilité exacte comme suit
Théoréme 1.5.3. Pourl > 0, supposons que :

1. (w,T,pk,) satisfait CCG, i=1,2,--- ,n,

2. K1 > Ky >---> K, dans w,

3. Q n’a pas de contact d’ordre infini avec ses tangentes,

4. The system (1.5.5) satisfait a la propriété de continuation unique des fonc-
tions propres.

Alors, le systeme (1.5.5) est exactement contrélable dans (H}(2) x L*(2))".

Comme nous l'avons présenté dans la section précédente, nous prouvons ce
théoréme par une procédure similaire. D’abord, nous appliquons la méthode
d’unicité de Hilbert, et obtiendrons I'inégalité d’observabilité : 3C' > 0 telle que
pour toute solution du systéme adjoint :

( Ok, vy = 0 dans |0, T[x,
Ok,v2 = 0 dans |0, T[xQ,

: (1.5.6)
Ok, v, = 0 dans |0, T[x£2,
v; =0 sur0,T[x0Q,1<j<mn,
L (U1(0> :E)a Otvl(O, Z’), o ,’Un(07 33)6752}71(07 ZE)) = VO’
ou V% e (L* x H 1™ nous avons :
T
C/o / brrvr + - + bukinval2dadt > |[VO|P 2y g1y (1.5.7)

Il nous suffit alors de prouver cette inégalité d’observabilité (1.5.7). En regardant
la haute fréquence, nous prouvons une estimation d’observabilité faible :

T n
||V0||?L2><H—1)" S C </ / |ijlijvj|2dl‘dt + ||v0||%H_1><H—2)n> . (158)

En supposant que l'inégalité ci-dessus soit fausse, nous pourrions obtenir une
séquence (VOF),.cn telle que:

IV s r-1yn = 1, (1.5.9)
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T
/ / by vf 4 -+ bprnvF|Pdedt — 0,k — oo, (1.5.10)
0 w

and
VO Ryt g—2yn = 0,k — o0, (1.5.11)

Nous utilisons ici v¥(1 < i < n) pour désigner la solution du systéme (1.5.6) avec
les données initiales V%*. Puisque nous avons I’hypothése 2, nous savons que les
variétés caractéristiques de chaque équation d’onde sont disjointes, ce qui implique
que

T n.r
/ / by kof + -+ bn/invadxdt ~2 Z/ / |bmivf|2d:vdt (1.5.12)
0 w i=1 Y0 w

Par conséquent, nous savons que chaque mesure de défaut ; associée a v¥ est nulle
par 'application de la propagation des mesures de défaut et CCG. Ceci fournit une
contradiction avec ||[V*[|22, 1), = 1. Ensuite, nous combinons I'hypothese (4),
nous savons que l'inégalité d’observabilité est vraie. Cela nous donne le résultat
de la controlabilité exacte du systéme (1.5.5).

Quelques résultats sur les propriétés de continuation unique

Comme nous pouvons le voir dans I'exemple simple, les propriétés de continuation
unique définies dans la Définition 1.5.2 sont vraies pour les métriques a coefficient
constant. Mais nous pouvons aussi construire un contre-exemple tel que cette
propriété de continuation unique ne tienne pas. En dimension 1, nous supposons
que la métrique g = c(z)dx?. Alors, A, = 1 _ < d FRixons intervalle ouvert
10, [ et le sous-intervalle |a,b[C]0, 7[, (¢ > Z). Nous considérons maintenant le

probléme de la continuation unique :

) = —\uy,
Agus = —Nuy,
uy + up = 0 in Ja, b,
uy,up € H}(]0, 7[).

(1.5.13)

Nous avons le résultat suivant :

Théoréme 1.5.4. I existe une métrique riemannienne lisse g = c(x)dx?, et deur
. 2 .
fonctions propres uy, uy de A, et dd? sur |0, w| associée a la valeur propre 1 telle

que uy + ug = 0, dans Ja,b[C|0, 7| et uy + uz #Z 0 dans |0, 7[.

Les lecteurs peuvent trouver la construction détaillée de ce contre-exemple dans
la section 3.5. En regardant le systéme 1.5.13, nous considérons l'intersection du
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spectre de deux Laplaciens avec des métriques différentes. Définissons 1'espace de
toutes les métriques lisses sur I'intervalle ouvert |0, [ par M. Nous prouvons la
proposition suivante :

Proposition 1.5.5. En dimension 1, supposons que nous fizions le laplacien A =
% dans |0, [ avec son spectre a(A). Alors l'ensemble G, = {g € M : a(A,) N
a(A) =0} est comaigre dans M*.

Alors, nous obtenons immeédiatement le corollaire suivant:

Corollaire 1.5.6. Fizez A = L pour toute métrique g € Gue, le systéme (1.5.13)

dz2?
a une solution unique uy; = ugy = 0.

En dimension 2, nous avons le résultat similaire:

Proposition 1.5.7. En dimension 2, supposons que nous fizions une métrique g
et le laplacien A, avec son spectre o(A,,). Alors l'ensemble G,. = {g € M? :
a(Ay) No(A,) =0} est comaigre dans M?.

Et pour les détails de la preuve, nous nous référons a la section 3.5.4.

1.5.2 Couplées via des termes d’ordre zéro «en cascade»

Dans cette section, nous considérons principalement le Laplacien & coefficients
constants. Il s’agit d’un travail conjoint avec Pierre Lissy. Dans cet article, nous
avons prouveé la controlabilité d’un systéme des ondes couplées avec un seul controle
et différentes vitesses.

Un modéle simple

D’adord, nous présentons un exemple simple comme suit:

(02— A)u; +uy =0 dans |0, T[x€,
(02 —2A)ug +u3 =0 dans |0, T[x€, (1.5.14)
(02 — 2A)us = f1, dans 0, T[xQ,

avec conditions de Dirichlet, ou f est une fonction L? supportée dans |0, T[xw. Par
rapport & (1.5.1), nous considérons une structure de couplage en cascade pour les
solutions. Notamment, le controle f n’agit directement que sur ug, qui lui-méme
agit sur us tandis que u; est controlé par us.

Pour ce systéme, nous avons (uy,us,u3) € H* x H? x H' avec des condi-
tions initiales nulle. En effet, puisque us satisfait une équation d’onde avec un
terme source f € L'(]0, T, L?), il est classique qu’il existe une solution unique
uz € CH[0,T],H}) N C°([0,T], L?). Puisque uy satisfait une équation d’onde
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avec un terme source —ug, alors uy € C'([0,7], H*) N C°([0,T], H}). Pour u,
de méme, on obtient que u; € C*([0,T], H*) N C°([0,T], H?). Maintenant, nous
avons besoin d’énoncer une propriété de régularité supplémentaire pour u;. En
appliquant 'opérateur de d’Alembert [y = 92 — 2A des deux cotés de 1'équation
de Oyuy = (07 — A)u; = —us, on obtient que

D2D1u1 = —DQUQ.

Puisque Ulhus = —usg, on obtient alors que Usllju; = ug. Nous considérons que
Clyuy satisfait une équation d’onde avec un terme source us. Par conséquent,
nous savons que Lyu; € CY([0,T], H?) N C°([0,T], H}). Puisque Oyu; = —uy €
C([0,T), H*)NC([0,T], H}), nous savons que Auy = Oyu;—Oeuy € CH([0,T], H?)N
C°([0,T), H}). Donc, nous savons que u; € C*([0,T], H*) N C°([0,T], H?). Alors,
nous remarquons un résultat de régularité (uy, us,u3) € H* x H> x H*. On peut
se référer a |20] pour une preuve différente.

De plus, avec des conditions initiales nulles, nous remarquons également qu’il
existe une condition de compatibilité pour ce probléme de controle, c’est-a-dire
(—A)%u; + Auy € H}. En fait, faisons d’abord une reformulation pour le systéme.

V1 = D?Ul,
Vo = DtUQ, (1515)
V3 = Usg.

Et (v1, v2,v3) satisfait au systéme suivant:

Oyvy + D?vy = 0 dans |0, T[x€,
Cyve + Dyvs = 0 dans |0, T[x€2, (1.5.16)
ngg = f dans ]O,T[XQ

Comme
—D? =200, — [, (1.5.17)
on a
D?vy = — (204 — Oy)vy. (1.5.18)
Donc,
01 (vq — 2v2) — Dyws = 0. (1.5.19)
On peut poser
y = Dyvy — 2D,vs. (1.5.20)
Alors, on a une équation pour y
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Pour y, en utilisant les équations, on a
y = Dy — 2D,v9

= Dful — 2Dt2U2

= Df(—Aul + Ug — 2U2)

= Df(—Aul — UQ)

= (—A)2U1 + AUQ — Us.
Donc, on obtient

Dl((—A)2’LL1 + AUQ + Ug) = f

De plus, on a (—=A)*u; + Auy + uz € H}, cest-a-dire, (—A)*u; + Auy € H.
En considérant la régularité de u; et uy, nous savons que (uj,us) € H* x H2
Par conséquent, nous pouvons seulement obtenir (—A)?u; + Aus € L?. Nous
devons considérer non seulement la régularité des solutions mais aussi les conditions
de compatibilité associées a la structure de couplage. Ceci est trés différent du
systéme sans couplage, et méme différent du systéme d’onde couplé par la méme
vitesse ou des systémes paraboliques couplés. A notre connaissance, il s’agit d’une

caractéristique unique pour ce type de systémes d’ondes couplés. Cela nous motive
a considérer un systéme plus général avec le méme type de structure de couplage.

la controélabilité d’un systéme d’équations d’ondes a vitesses différentes

On consideére le systéme suivant:

(82 — DAYU + AU = bf1, dans 10, T[x €,
U 0 sur 10, T[x 09, (1.5.22)
(U7 at[])|7ﬁ=0 = (U07 Ul) dans Qa

avec

_( dId,, 0 [0 A . (0
D_< ' dﬂdm)m,,q_(oAz)m,andb_(b)m,<1.5.23>

oun=n;+ngetd #do. Ay € My, n,(R) et Ay € M,,,(R) sont deux matrices
de couplage données et b € R™2.

Nous avons les propriétés importantes et cruciales du systéme (1.5.22) : tous les
coefficients sont constants, le couplage est en structure de cascade (notamment, la
commande f n’agit directement que sur U,, qui elle-méme agit sur U; par la matrice
Ay), et nous nous limitons au cas d’une commande scalaire (i.e. f € L*(]0,T[,R™)
avec m = 1).

Dans la proposition suivante, nous donnons une condition équivalente de la
condition de rang de 'opérateur Kalman associée au systéme (1.5.22), qui est trés
spécifique a notre structure de couplage particuliére et au fait que nous avons un
seul controle.
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Proposition 1.5.8. Nous désignons par K = [~ DA+ A|B] Uopérateur de Kalman
associé au systeme (1.5.22). Alors, Ker(K*) = {0} est équivalent a la satisfaction
de toutes les conditions suivantes

1. ny = 1,’

2. (Ag, B) satisfait la condition algébrique de rang de Kalman (voir Définition
1.2.3);

3. Supposons que A1 = a = (aq, -+ ,Qp,). Alors VA € o(—A), «a satisfait

no—2 n2
o <Z (dy — da)* N >~ a; ATF 4 (dy — dg)”2_1)\”2_11dn2> b 40,
k=0 j=k+1

(1.5.24)
ol (a;)o<j<n, sont les coefficients du polynome caractéristique de la matrice

Ay, c’est-a-dire x(X) = X" + Z;Zgl a; X7, avec la convention que a,, = 1.
Avec cette condition équivalente, nous pouvons simplifier le systéme:

( Ohup 4377 asuj = 0 dans ]0, T[x,
Oyu? + uz = 0 dans 0, T[x,

Opu?, | +u2, = 0 dans |0, T[x,
Ogul, — 2772 anyy1-ju; = f1, dans ]0, T[xS,
up =0,u? =0 sur]0,7[x0Q,1 < j < ny,

(ul, w2, u2)) im0 = (uy,ui?, - - u2?) dans €,

\ (atu’%a atu%a e 7atu312)|t=0 = (u},lv u%la e 7u721721) dans .

(1.5.25)

Icing =1, Ay = (a1, - ,40,--+,0) et

0 1 0 0 0
Ay = 0 0 , and b=
—an, —ay —a 1

Puisque nous considérons le probléme de controle dans un domaine €2 avec fron-
tiere, il est naturel pour nous d’introduire les espaces de Hilbert suivants Hg(A).

Définition 1.5.9. Nous désignons par (ﬂ?)jGN* la séquence mon décroissante de
valeurs propres (positives) de l'opérateur de Laplace —A avec condition de Dirich-
let, répétée avec multiplicité, et (e;)jen= une base orthonormée de L*(2) constituée
de fonctions propres associées a (ﬁ?)je,\,*:

—Aej = Bie;, lejlle =1.
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Pour tout s € R, nous désignons par H&(A) lespace de Hilbert défini par

Hy(A) ={u=">aje;; > (14 8])*|a]* < oo}. (1.5.26)

JEN* JEN*

Sous cette structure particuliére de couplage, nous introduisons des conditions
de compatibilité appropriées pour le systéme (1.5.25). Désignons par H, l'espace
suivant

H, = {(u,v1, -+ ,vpy) € HZ 5T (A) x HETW(A) x - x HH(A) t.q.
Usomp € Ho(AD)},

(1.5.27)
ou
Ugomp — ((_d1A>n2*s+1u

ng—s s ng—s—k

+Y N <n2 _ZS B k) (—dy AYF(—dy ARy

k=0 j=1 (=0

s mn2—2s+jns—s—k Oédedlf Ng — 8§ — k na—s—k—l
@ —dyri\ 1 )RS Uikt |

(1.5.28)

+
j=1 k=0 1=0

Définition 1.5.10. L’espace d’état du systéeme (1.5.25) est défini par

Hl X Ho.
Les deux conditions
1 1,0 20 2,0 1
Ucomp(ul y Uy - 7un2) S HQ(AD)ﬂ
0 1,1 2,1 2,1 0
Ucomp(ul yUp 5 7un2> € HQ(AD)

sont appelées les conditions de compatibilité pour la controlabilité du systéeme (1.5.25).
Avec ces espaces bien préparés, nous obtenons le résultat suivant :

Théoréme 1.5.11. Pour T > 0, supposons que:
1. (w,T,pg,) satisfait CCG, i =1,2.
2. Q n’a pas de contact d’ordre infini avec ses tangentes.

3. L’opérateur de Kalman K = [-DA + A|j§] satisfait a la condition de rang
de lopérateur de Kalman, c’est-a-dire que Ker(K*) = {0}.
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Alors le systéme (1.5.22) est exactement controlable.
Nous prouvons le théoréme ci-dessus en trois étapes.

1. Etape 1: Nous simplifions le systéme (1.5.22), en utilisant la forme normale
de Brunovsky. Ceci est basé sur la Proposition 1.5.8 et nous avons seulement
besoin de prouver la controlabilité exacte pour le systéme simplifié.

2. Etape 2: Nous utilisons les schémas d’itération pour obtenir les conditions de
compatibilité associées a la structure de couplage dans le systéme (1.5.22).
Par conséquent, nous préparons les espaces d’état appropriés pour la con-
trolabilité du systéme.

3. Etape 3: Nous utilisons la méthode d’unicité de Hilbert pour dériver I'inégalité
d’observabilité, puis nous suivons la méme procédure que dans la section
précédente. Nous établissons une inégalité d’observabilité faible et prouvons
cette inégalité d’observabilité faible par I'argument de contradiction et la
propagation des mesures de défaut pour les systémes. Enfin, la propriété de
continuation unique est donnée par la condition de rang de Kalman.
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Chapter 2

Introduction (English)

2.1 Motivations

The controllability of the wave equations is a classic research topic in both the
control theory and the analysis of partial differential equations. There is a large
literature on the controllability of linear wave equations. One of the best results
on this subject has been obtained by Bardos, Lebeau and Rauch in their article
[10], where they introduced the famous geometric control condition and presented
the application of the microlocal analysis in the subject. We can also refer to the
paper [14| by Burq and Gérard and the paper [12] by Burq for the improvements
or a simpler proof. These results form a basic backgrounds and also provide the
main strategy for us to study the controllability of the wave equations.

As we can see, for a single wave equation, the exact controllability is by now
well-known. There is a large literature on the controllability of a scalar wave
equation through different approaches such as [10] by using microlocal analysis
as we mentioned before, [38, 29] by using multipliers, |25, 11| by using Carleman
estimates, or a completely constructive proof [30], etc.

Although we now have a better picture on the controllabilty of a single wave
equation, the controllability of systems of wave equations is still not totally un-
derstood. To our knowledge, most of the references concern the case of systems
with the same principal symbol. Alabau-Boussouira and Léautaud [5] studied the
indirect controllability of two coupled wave equations, in which their controlla-
bility result was established using a multi-level energy method introduced in [2],
and also used in [3, 4]. Liard and Lissy [37], Lissy and Zuazua [40] studied the
observability and controllability of the coupled wave systems under the Kalman
type rank condition. Moreover, we can find other controllability results for coupled
wave systems, for example, Cui, Laurent, and Wang [19] studied the observability
of wave equations coupled by first or zero order terms on a compact manifold.
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However, when we consider the controllability of the wave system coupled with
different speeds, there are very few results.

On the other hand, considering the controllability of a parabolic system, we find
that there are no differences between the coupling with same speed and different
speeds (for instance, see [6]). This also motivates us to investigate the results on
the controllability of the wave system with different speeds.

In this thesis, the main model under study is the wave equation in the following
form. Let Q C RY, d € N*, be a bounded, and smooth domain. For positive
constants « and 3, let k;j(z) : @ = R, 1 <4,j < d be smooth functions which
satisfy:

kij(a) = kji(e), ol < D kyl@)6i; < BIEP,Va € Q,¥E € R (2.1.1)

1<i,5<d

Define K(z) to be the symmetric positive definite matrix of coefficients k;;(z).

Moreover, we define the density function x(x) = m. We also define the

Laplacian by Ax = ﬁdiv(n(x)KV-) on {2 and the d’Alembert operator Og =
02 — Ak on Ry x Q. we consider a nonhomogeneous wave equation with a source
term f:

Oxu = f, (2.1.2)

with initial conditions:
=0 = u°, Opu|i—o = u'. (2.1.3)

2.2 Preliminaries

In this section, we shall introduce some basic aspects in the control problem of
wave equations. We assume that w is a nonempty open subset of 2. We consider
the interior controllability problem for the following wave equation:

Ogu = f1, in (0,7T") x £,
u=0 on (0,7) x 09, (2.2.1)

uli=o = u'(x), Opuli=o = u'(z),

where f is a control function with support only localized in the subdomain w.

It is well known that the wave equation models many physical phenomena such
as small vibrations of elastic bodies and the propagation of sound. For instance
(2.2.1) provides a good approximation for the small amplitude vibrations of an
elastic string or a flexible membrane occupying the region Q2 at rest. The control
f represents then a localized force acting on the vibrating structure.
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In addition, since the wave equation is the most relevant hyperbolic equations.
Through the study of the wave equation, it helps us to understand how the prop-
erties of the hyperbolic equations act on the control problems.

Therefore it is interesting and important to study the controllability of the
wave equation as one of the fundamental models of continuum mechanics and, at
the same time, as one of the most representative equations in the theory of control
of partial differential equations.

2.2.1 Controllability

In this section, we shall introduce several different types of the controllability for
the wave equation (2.2.1).

Definition 2.2.1 (Controllability). Let T > 0.

1. (Ezact controllability) We say that the wave equation (2.2.1) is exactly con-
trollable in H} x L? in time T if for any initial data (u°,u') € H} x L* and tar-
get data (0°,a') € H} x L?, there exists a control function f € L*((0,T) x w)
such that the solution of (2.2.1) issued from (uli—o, Oruli—o) = (u°,ul), sat-
isfies (u)i=r, Opuli=r) = (a°, a').

2. (Null controllability) We say that the wave equation (2.2.1) is null controllable
in Hy x L? in time T if for any initial data (u°,u') € H} x L2, there exists
a control function f € L*((0,T) x w) such that the solution of (2.2.1) issued
from (u|i=o, Opuli—o) = (u°,ul), satisfies (uli=r, Ouli—r) = (0,0).

3. (Controllability from zero) We say that the wave equation (2.2.1) is control-
lable from zero in Hy x L* in time T if for target data (a°,u') € Hy x L?, there
exists a control function f € L*((0,T) X w) such that the solution of (2.2.1)
issued from (uli=g, Oyuli=o) = (0,0), satisfies (u|i=r, Opu|i=r) = (a°,a').

4. (Partial controllability) Let T1 be a projection operator defined in Hy x L*. We
say that the wave equation (2.2.1) is 11— exactly controllable in H x L? in time
T if for any initial data (u°,u') € H} x L? and target data (a°,a') € Hj x L?,
there exists a control function f € L*((0,T) x w) such that the solution of
(2.2.1) issued from (uli=o, Osuuli—o) = (u®,ul), satisfies U(u|=r, Opu|i=r) =
I(a°, at).

Remark 2.2.2. Since the wave equation we consider is linear and reversible in
time, the exact controllability, null controllability and the controllability from zero
are all equivalent (one can refer to [17, Theorem 2.41]).
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2.2.2 Kalman conditions

In this section, we recall some Kalman rank conditions introduced in the literature
of coupled parabolic systems and the link between them. First of all, we recall the
usual Kalman rank condition for the controllability of linear autonomous ordinary
differential equations (see e.g. [28]).

Definition 2.2.3 (Usual algebraic Kalman rank condition). Let m, n be two pos-
itive integers. Assume A € M, (R) and B € M,,,,(R). We introduce the Kalman
matriz associated to A and B given by [A|B] = [A"'B|---|AB|B] € M,um(R).
We say that (A, B) satisfies the Kalman rank condition if [A|B] is of full rank.

This Kalman’s type conditions for controllability are introduced in 28], which
is a criterion for the time invariant linear control system & = Ax + Bu with a
control u € L*>(|Ty, T1],R™). Moreover, we notice that the Kalman rank condition
is an equivalent condition for the controllability of the time invariant linear control
system & = Ax + Bu (one can refer to [17, Remark 1.17]).

Definition 2.2.4 (Kalman operator). Assume that X € R™™ and Y € R"*™.
Moreover, let D € R™™ be a diagonal matriz. Then, the Kalman operator associ-
ated with (—DA + X,Y) is the matriz operator # = [-DA + X|Y] : D(¥) C
(L?)"™ — (L*)™), where the domain of the Kalman operator D(#) = {u €
(L?)"™ . #u e (L*)"}.

Definition 2.2.5 (Operator Kalman rank condition). We say that the Kalman
operator £ satisfies the operator Kalman rank condition if Ker(o#™*) = {0}.

The operator Kalman rank condition can be reformulated as follows.

Proposition 2.2.6. [6, Proposition 2.2] The operator Kalman rank condition is
equivalent to the following spectral Kalman rank condition:

rank[(AD + X)|Y] =n,VA € o(—A).

In particular, let C > 0 be a constant and D = Cld,. Then, the operator Kalman
rank condition s equivalent to the usual algebraic Kalman rank condition given in
Definition 2.2.3 (see [6, Remark 1.2]).

2.2.3 Hilbert uniqueness method

For the wave equation (2.2.1), we introduce the adjoint equation as follows:

Oxv =0 in (0,T) x €,
v=0 on (0,7) x 09, (2.2.2)

V=0 = 0%(2),  Opli—o = v'(x),
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Definition 2.2.7. We say a homogeneous wave equation (2.2.2) is observable in
[0, T]xw if there exists a constant C' > 0 such that every solution v € C°(0,T, L*)N
CY0, T, H™') of the homogeneous wave equation (2.2.2) satisfies

T
c/ /|/-w]2dxdt2 110022 + ([0 (2.2.3)
0 w

Here the inequality (2.2.3) is called the observability inequality for the adjoint
equation (2.2.2).

According to the Hilbert Uniqueness Method of J.-L. Lions [38], the controlla-
bility property is equivalent to an observability inequality for the adjoint system.

Theorem 2.2.8. The wave equation (2.2.1) is null controllable if and only if the
adjoint equation (2.2.2) is observable in [0,T] X w.

The proof idea of this theorem is the so-called Hilbert uniqueness method
(HUM), which establishes the duality between the null controllability and the
obsevability. We define the operator R by

R:feL*(0,T) xw)— (u’,u') € Hy x L? (2.2.4)

where u is the solution of (2.2.1) with (u|=7, dyu|t=r) = (0,0). On the other hand,
we define the operator S by

S0y e L2 x H ' = bulom (t)1,(x) € L*((0,T) X w), (2.2.5)

where v solves the adjoint equation (2.2.2). Therefore, the null controllability is
just the surjectivity of the operator R and the observability is just the coercivity
of the operator S. The Theorem 2.2.8 implies the duality R* = S.

2.2.4 Geometric control condition

In order to study the observability inequality, a classical method is to follow the
abstract three-step process initialized by Rauch and Taylor [46](see also [10]). It
can be detailed as follows:

e Firstly, get the microlocal information on the observable region. Argue by
contradiction to obtain different kinds of convergence in subdomain (0,7") x w
and the whole domain (0,77) x €.

e Secondly, use microlocal defect measure (which is due to Gérard [23] and
Tartar [47]), or propagation of singulaties theorem (see |26, Section 18.1] )
to prove a weak observability estimate:

T
o025 + [0y < O / / brolPdadt + |[0%) s + [0 |13—2).
0 w
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e Thirdly, use unique continuation properties of eigenfunctions to obtain the
original observability inequality Equation (2.2.3).

For the high frequency estimates, a very natural condition is to assume that the
control set satisfies the Geometric Control Condition(GCC).

Definition 2.2.9. For w C Q and T > 0, we shall say that the pair (w,T,pk)
satisfies GCC' if every general bicharacteristic of px meets w in a time t < T,
where pg 1s the principal symbol of Ok .

We will give the definition of bicharacteristics in Subsection 2.3.1. This condi-
tion was raised by Bardos, Lebeau, and Rauch [9] when they considered the con-
trollability of a scalar wave equation and has now become a basic assumption for
the controllability of wave equations. In [14], the authors show that the geometric
control condition is a necessary and sufficient condition for the exact controllability
of the wave equation with Dirichlet boundary conditions and continuous boundary
control functions.

2.2.5 Unique continuation properties

For the low frequencies of the observability inequality, this reduces to prove a
unique continuation property of the eigenfunctions of the Laplacian. That is to
say, if ¢ satisfies the equation

“Axd = \b,\ € C, (2.2.6)

and ¢|, = 0, can we obtain that ¢ =0 in .

2.3 Microlocal defect measures for wave equations

2.3.1 Geometric Preliminaries

Let B = {y € R?: |y| < 1} be the unit ball in R%. In a tubular neighbourhood
of the boundary, we can identify M = Q x R; locally as [0, 1[x B. More precisely,
for z € M = Q x Ry, we note that z = (z,y), where x € [0,1] and y € B and
z € OM = 09 x R, if and only if z = (0,y). Now we consider R = R(z,y, D,)
which is a second order scalar, self-adjoint, classical, tangential and smooth pseudo-
differential operator, defined in a neighbourhood of [0, 1] x B with a real principal
symbol r(x,y,n), such that

or

8_77 # 0 for (x,y) € [0,1[x B and n # 0. (2.3.1)
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Let Qo(z,y,D,), Q:1(z,y,D,) be smooth classical tangential pseudo-differential
operators defined in a neighbourhood of [0, 1] x B, of order 0 and 1, and principal
symbols qo(x,y,n), q.(z,y,n), respectively. Denote P = (0> + R)Id + Q0. + Q.
The principal symbol of P is

We use the usual notations T'M and T*M to denote the tangent bundle and
cotangent bundle corresponding to M, with the canonical projection m

m:TM(or T"M) — M.

Denote 7o(y,n) = (0, y,n). Then we can decompose T*9M into the disjoint union
E UG UH, where

E= {7‘0 < 0}, g = {T() = 0}, H = {7’0 > 0} (233)

The sets £, G, H are called elliptic, glancing, and hyperbolic set, respectively. De-
fine Char(P) = {(z,y,&,n) € T*R¥M |57 : €2 = r(z,y,£, 1)} to be the characteristic
manifold of P. For more details, see [15] and [13].

2.3.2 Generalised bicharacteristic flow

We begin with the definition of the Hamiltonian vector field. For a symplectic
manifold S with local coordinates (z,(), a Hamiltonian vector field associated
with a real valued smooth function f is defined by the expression:

_ofo ofo

17 9¢0: 9z

Considering the principal symbol p, we can also consider the associated Hamilto-
nian vector field H,. The integral curve of this Hamiltonian H,, denoted by 7,
is called a bicharacteristic of p. Our next goal is to study the behavior of the
bicharacteristic near the boundary. To describe the different phenomena when a
bicharacteristic approaches the boundary, we need a more accurate decomposition
of the glancing set G. Let r; = 9,7|,—0. Then we can define the decomposition

G=U7,¢, with
G* ={(y.n) : ro(y,n) = 0,71 (y,m) # 0},

G ={(y,n) : roly,n) = 0,71 (y,n) = 0, Hy, (1) # 0},

G = {(y,m) s roly,m) = 0, H] (r1) = 0,¥j <k, H M () # 0},

G = {(y,n) : ro(y,n) = 0, HZ (1) = 0,Vj}.
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Here Hﬂo is just the vector field H,, composed j times. Moreover, for G?, we can
define G*>* = {(y,n) : ro(y,n) = 0,%r1(y,n) > 0}. Thus G = G>T U G*>~. For
p € G>T, we say that p is a gliding point and for p € G>~, we say that p is a
diffractive point. For p € G/, j > 2, we say that a bicharacterisric of p tangentially
contact the boundary {x = 0} x B with order j at the point p.

Consider a bicharacteristic v(s) with w(v(0)) € M and 7(y(so)) € OM be
the first point which touches the boundary. Then if v(sg) € H, we can define
X (y(s0)) = £+/7r0(7(s0)), which are the two different roots of €2 = r( at the point
7(s0). Notice that the bicharacteristic with the direction £~ will leave the domain
M while the bicharacteristic with the other direction £ will enter into the interior
of M. This leads to a definition of the broken bicharacteristics(See [26] Section
24.2 for more details):

Definition 2.3.1. A broken bicharacteristic of p is a map:
s € I\D — ~(s) € T"M\{0}
where I is an interval on R and D s a discrete subset, such that

1. If J is an interval contained in I\D, then for s € J — ~(s) is a bicharac-
teristic of p in M.

2. If s € D, then the limits v(s™) and v(s™) exist and belongs to TX M\{0} for
some z € OM, and the projections in TXOM\{0} are the same hyperbolic
point.

If v(so) € G, we have different situations. If v(sg) € G, then ~(s), locally
near sg, passes transversally and enters into 7*M immediately. If v(sy) € G*~
or y(sp) € G* for some k > 3, then ~y(s) will continue inside T*9M and follow
the Hamiltonian flow of H_, ;. To be more precise, we have the definition of the
generalized bicharacteristics(See [26] Section 24.3 for more details):

Definition 2.3.2. A generalized bicharacteristic of p is a map:
s€eI\Dw—~(s)eT"MUG

where I is an interval on R and D s a discrete subset I such that po~y =0 and
the following properties hold:

1. v(s) is differentiable and g—z = H,(v(s)) if v(s) € T*M or ~(s) € G>™.

2. Everyt € D is isolated i.e. there exists € > 0 such that v(s) € T*M\T*OM
if 0 < |s —t| < e, and the limits v(s*) are different points in the same
hyperbolic fiber of T*OM .
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3. v(s) is differentiable and %Z' = H_,,(v(s)) if v(s) € G\G*>™.

Remark 2.3.3. We denote the Melrose cotangent compressed bundle by ST*M and
the associated canonical map by j : T*M — *T*M. j is defined by

i@, y,8n) = (x,y,28,m).

Under this map j, one could see v(s) as a continuous flow on the compressed
cotangent bundle *T*M. This is the so-called Melrose-Sjostrand flow.

From now on we always assume that there is no infinite tangential contact
between the bicharacteristic of p and the boundary. This is in the meaning of the
following definition:

Definition 2.3.4. We say that there is no infinite contact between the bicharac-
teristics of p and the boundary if there exists N € N such that the gliding set G

satisfies
N
G=J¢.
j=2

It is well-known that under this hypothesis there exists a unique generalized
bicharacteristic passing through any point. This means that the Melrose-Sjostrand
flow is globally well-defined. One can refer to [42] and [43] for the proof.

2.3.3 Microlocal defect measure

In this section, we will give two approaches to construct the microlocal defect
measures. The first one is based on the article by Gérard and Leichtnam [24] for
Helmoltz equation and Burq [13| for wave equations. The other one follows the
idea in the article [31] by Lebeau and we rely on the article [15] by Burq and
Lebeau for the setting of wave systems. In the first approach, we can compare two
different measures, especially the supports of two different measures. Let (u*)gen
be a bounded sequence in (L}, (R*;L*(2)))", converging weakly to 0 and such

loc
that
{Puk =o(1)y-1,

2.3.4
Uk|aM =0. ( )

Let w;, be the extension by 0 across the boundary of €2. Then the sequence v, is
bounded in (L3, (Ry; L*(R%)))". Let A be the space of n x n matrices of classical
polyhomogeneous pseudo-differential operators of order 0 with compact support
in R x R? (i.e, A = pAgp for some ¢ € C°(RT x RY)). Let us denote by M™ the
set of nonnegative Radon measures on 7*(R* x R%). Following [13, Section 1], we
have the existence of the microlocal defect measure as follows:
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Proposition 2.3.5 (Existence of the microlocal defect measure-1). There exists
a subsequence of (u*) (still noted by (u*)) and p € M* such that

VA € A, klim (AuF, uF) 2 = (p, 0(A)), (2.3.5)

—00 -
where o(A) is the principal symbol of the operator A (which is a matriz of smooth
functions, homogeneous of order 0 in the variable &, i.e. a function on S*((RT x

RY)).
From [13, Théoréme 15|, we have the following proposition.

Proposition 2.3.6. For the microlocal defect measure p defined above, we have
the following properties.

o The measure p is supported on the intersection of the characteristic manifold
with R* x Q:

supp(p) C Char(P) = {(t,x,7,&);x € M, 7% = |£2}. (2.3.6)

e The measure p does not charge the hyperbolic points in OM :
u(H) = 0.

e [n particular, if n = 1, the scalar measure p is invariant along the generalized
bicharacteristic flow.

Remark 2.3.7. Notice first that in [13, Section 3/, the author considered the case
of solutions to the wave equation at the energy level (bounded in H},, and hence
was considering second order operators. However, it is easy to pass from H' to
L? solutions by applying the operator 8, and conversely from L* to H' by applying
the operator 0; ", i.e. if v is an L? solution, considering the solution u associated
to ((—AD)*l(atv li=0), v |t:0), which of course satisfies Oyu = v. This procedure
amounts to replacing the test operators of order 0 A by the test operator of order
2, B=—0,0A00,, but since T2 does not vanish on the characteristic manifold, it
is an elliptic factor which changes nothing.

Remark 2.3.8. Notice also that due to discontinuity of the generalised bicharac-
teristics when they reflect on the boundary at hyperbolic points (the points corre-
sponding to the left and right limits at s € D), in Definition 2.3.1, the generalised
bicharacteristic flow is not well defined (there are two points above any points
corresponding to s € D). However, since the measure j1 does not charge these hy-
perbolic points, this flow is well defined p almost surely and the invariance property
makes sense. Notice also that in [13, Appendice], weaker property than invariance
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(namely that the support is a union of generalised bicahracteristics) is proved. The
general result follows from this weaker result by applying the strategy in [31]. In
any case, for the purpose of the present article, the invariance of the support would

suffice.

On the other hand, let A be the space of n x n matrices of pseudo-differential
operators of order 0, in the form of A = A;+ A; with A; classical pseudo-differential
operator with compact support in M (i.e, A; = @A;p for some ¢ € C§°(M)) and
A, a classical tangential pseudo-differential operator in M (i.e, A; = pA,p for some
¢ € C*(M)). Then denote

Z = j(Char(P)), Z=ZUj(T"M|s—),
where j is defined in (4.2.14) and
SZ = (2\M)R,, SZ = (Z\M)/R.

Remark 2.3.9. SZ and SZ are the quotient spherical spaces OfZ and Z and they
are locally compact metric spaces.

For A € A, with principal symbol a = 0(A), define

k(a)(p) = a(j ™" (p)).Vp € "T"M.

Now, we have that £ = {k(a) : a = 0(A),A € A} C COA(SZ; End(C™)). Define
M to be the space of all positive Borel measures on SZ. By duality, we know
that M™ is the dual space of CJ(SZ; End(C")), which verifies the property:

(jr,a) > 0,Ya € C°(SZ; End*(C")),Yu € M™,

where End*(C™) denotes the space of n X n positive hermitian matrices. Following
the article [15] by Burq and Lebeau, we obtain the existence of the microlocal defect
measure and some properties as follows:

Proposition 2.3.10 (Existence of the microlocal defect measure-2). There exists
a subsequence of (u¥) (still noted by (u*)) and p € M™ such that

VA e A, klim (AuF uF) 2 = (p, k(0 (A))). (2.3.7)
— 00
Lemma 2.3.11. The microlocal defect measure p defined in Proposition 2.3.10
satisfies that ply e = 0 where H is the set of hyperbolic points and & is the set of
elliptic points as defined in Subsection 2.3.1.
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Remark 2.3.12. From Proposition 2.3.6, we know that supp(p) C Char(P). No-
tice that in the interior of M, the two definitions coincide, i.e., Blcharp) = 1 in
the interior of M. At the boundary, since both measures j1 and p do not not charge
the hyperbolic points in OM, we know that p|g; = p holds p almost surely and I

almost surely. Under this sense, we can identify the two measures.

In the following, suppose that there is no infinite contact between the bicharac-
teristic of p and the boundary. This hypothesis implies the existence and unique-
ness of the generalized bicharacteristic passing through any point, which ensures
that the Melrose-Sjostrand flow is globally well-defined. By a suitable change of
parameter along this flow, we obtain a flow on SZ. Consider S a hypersurface tran-
verse to the flow. Then locally, SZ = R, x S where s is the well-chosen parameter
along the flow. We have the following propagation lemma for the microlocal defect
measure.

Lemma 2.3.13. Assume that the microlocal defect measure p is defined in Propo-
sition 4.2.8. Then p is supported in SZ and there exists a function

(s,2) ERy x S+ M(s,z) € C"

p—almost everywhere continuous such that the pull back of the measure p by
M (i.e., the measure P*u = M*uM defined for a € C°(SZ)) by

(M*uM,a) = (pn, MaM™)

satisfies

Lo

s’ T
We say that the measure p is invariant along the flow associated to M. Further-
more, the function M s continuous and along any generalized bicharacteristic the
matrix M is solution to a differential equation whose coefficients can be explicitly

computed in terms of the geometry and the different terms in the operator P.

For the differential equation which M satisfies, one can refer to [15, Section
3.2] for more details.

Remark 2.3.14. For a scalar wave equation, we know that the defect measure is
invariant along the general bicharacteristic flow.

Remark 2.3.15. Roughly speaking, in the result above, the norm of M describes
the damping of the measure 1, whereas the rotation component of M describes the
way the polarization of the measure (asymptotic polarization of the sequence (u¥))
18 turning.
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2.4 The controllability of a scalar wave equation

In this section, we provide a sketch proof for the controllability of a scalar wave
equation as we introduced in (2.2.1):

Ogu = f1, in (0,7) x €,
u=0 on (0,7) x 09, (2.4.1)

uli=o = u’(x), dpuli=o = u'(2),

where we assume that f € L?((0,7T) X w) and the initial data (u",u') € HJ(Q2) x
L?(Q). We consider the null controllability of this equation. The proof is based
on three steps as follows:

1. (HUM and observability) Applying the Hilbert uniqueness method, the con-
trollability property is equivalent to an observability inequality for the adjoint
system. To be more precise here, we only need to prove: 3C' > 0 such that
for any solutions of the adjoint equation:

Ogv=0in (0,7) x €,
v=0 on (0,T)x 09, (2.4.2)
V=0 = v°(2), Opvli=o = v'(2),

we have

T
1001122 + ([0 [F- < C/O /|v\2dxdt. (2.4.3)

2. (High-frequency estimates) We first establish a weak observability inequality
as follows:

T
[0 + 1 Bres < € ([ oo 1691+ 1) - (2

We prove this inequality by the argument of contradiction. Suppose the
inequality (2.4.4) is false, there exists a sequence (v*°, v%1)en in L? x H™!

such that
W02 + [0 = 1, (2.4.5)
-1+ [[05[F-2 = 0,k = o0
T
/ / 0¥ |2 dzdt — 0,k — oo (2.4.7)
0 w

where v* is the solution of (2.4.2) with initial data (v*° v®!). Hence, there
exists a microlocal defect measure p associated with the bounded sequence
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v*.  According to the previous section, we know that s is invariant along

the general bichacteristic flow. In addition, we know that p|rxw = 0 by
(2.4.7). Hence, we obtain 1 = 0. Combining with the energy conservation
law of the homogenerous wave equation (2.4.2), there is a controdiction with
the hypothesis (2.4.5). Therefore, we prove the weak observability inequality
(2.4.4).

. (Low-frequency estimates) We use the weak observability inequality (2.4.4)
to prove the original observability (2.4.3). We also argue by contradiction.

Suppose that (2.4.3) is false, then, there exists a sequence (vF0, v%1)ien in
L? x H~! such that
[0 + Il [ =1, (2.48)
T
/ / W 2dwdt — 0,k — oo (2.4.9)
0 w

where v* is the solution of (2.4.2) with initial data (v%° v¥1). Since we
proved the weak observability inequality, we know that

T
1= O+ 1ok Bee < € ([ 1t 1 [ )
0 w

(2.4.10)

Let (v°,v') be the weak limit of (v®9 v%1), ie. (%0 v®1) — (00,01 in L? x

H~! and v be the solution of the adjoint equation (2.4.2) with initial data

(v, vh). Since L*x H™' + H~'x H~?% is compact, we know that |[vo*|[%,_, +

o2 = |[0°)%-1 + [[0!||%-2. As a consequence, let k tends to infinity,
we obtain that

1< C (||0°f3=r [0 [Fr=2) - (2.4.11)

Then we analyze the space of the invisible solutions defined by

N(T) ={(w’,w") € I*xH ' :w(t,z) =0, fort € (0,T),z € w}. (2.4.12)

Here w is a solution of the adjoint equation (2.4.2) with initial data (w?, w?).

Hence, (v°,v') € N(T). Next, we prove that A(T) = {0}. According to

(2.4.4), we know that N (T) has finite dimension. Define &7 = g (1) .
—Ag
Then N (T) is stable under the application of /. Therefore, N'(T') contains

an eigenvector of &, i.e. 3\ € C and (¢o, ¢1) € Hy x L? such that

oo\ o) :
a(0)=a () me 2413

Po =0, in w.
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This is equivalent to: for A € C and ¢y € H_

—Ag¢y = Ny, in €,
{ ¢ =0, in w. (2.4.14)

This is a classic unique continuation problem. Using Carleman estimates
(see [16]), we obtain that ¢y = 0. Consequently, we know that N(T) =
{0}. Therefore, we have (v°,v') = (0,0), which is a contradiction with the
hypothesis (2.4.11). Hence, we prove the observability inequality (2.4.3).

In summary, we first apply Hilbert uniqueness method to obtain the observability
inequality. Then for high-frequency regime, we prove a weak observability inequal-
ity by the microlocal analysis. At last, for low-frequency regime, it is equivalent to
proving a unique continuation property for some eigenfucntions. This is the basic
strategy for us to deal with the controllability of the wave equations.

2.5 Coupled wave systems

2.5.1 Coupled by the control function

In this section, we consider the interior simultaneous controllability problem of a
wave system with different speeds. One could find this result in my article [44].

A simple model

First we introduce a simple example as follows:

(07 = A)ur = fLiom)(t)1u(z)

(07 = 20)uz = flom)(t)1u(x)

u; =0 on (0,7) x09,j=1,2,

u;(0,2) =u)(zx) € Hy, 0Owuy(0,2) =uj(z) € L, ] =1,2.

(2.5.1)

Notice that these two wave equations are of different speeds and we use the same
control function f € L*((0,T) x w) to control both equations at the same time.

For our example (2.5.1), applying Hilbert uniqueness method, we only need to
prove an observability inequality

2

T
Z(HU?H%; + H’U}H%I*l) S C/O / |’U1 + UQIdedt (252)

i=1
for solutions (v, v2) of the adjoint system with initial data (v}, v}):
(02 — A)yv; =0
{ (9 — 20y — 0 (2.5.3)
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To prove the inequality (2.5.2), we first look at the high-frequency regime. Since
the two wave equations are of different speeds, then characteristic manifolds are
disjoint, which implies that ||v1 + vo||32 & [|v1]|72 + [|v2]|32 in the high-frequency
regime. With the application of the microlocal defect measures, we know that for
high frequencies, observe the sum v; + v is almost equivalent to observing each of
them. Then, we look at the low-frequency regime. It is equivalent to considering
a unique continuation problem for eigenfunctions as follows: only zero solutions
satisfy that

—Ag¢; = A¢y in (,

¢1 + sz =0 in w.

In this example, this property is easy to prove. Since the eigenfunctions of the
laplacian are analytic, we know that ¢; + ¢ = 0 in the whole domain 2. Then,
by adding two equations together, we obtain that A¢s = 0. Combining with the
Dirichlet boundary condition, we know that ¢ = 0, which implies that ¢; = —¢o =
0. Hence, we are able to prove this simultaneous control problem. Therefore, we
conclude three features of this kind of problem:

1. Wave equations are of different speeds while we use the same control function
to control all these equations at the same time.

2. Considering the observability inequality, we use the localized norm (restricted
in subdomain w) of the sum of solutions to control the full energy norm of
the initial data.

3. We need a unique continuation property for the eigenfunctions associated
with the wave system.

This motivates us to consider the generalisation of this example.

Simultaneous control of wave systems

In my article [44], we consider the exact controllability on an open domain 2 of
wave systems with space varying and different speeds coupled by a single con-
trol function acting on a open subset w. To be more precise, we consider the
simultaneous interior controlllability for the following wave system:

Oryur = bifLom) (1) 1e(z) in (0,T) x €,
DK2U/2 = bgfl(Q,T)(t)]_w(I) in (O,T> X Q,

4

: ' (2.5.5)
Oxk, Uy = by flo7)(t)1y(x) in (0,T) x €,

u; =0 on (0,7) x 09,1 <j<n,

u;(0,2) =ud(x), Ju;(0,2) =uj(z),1<j<n.
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Here, we choose K;(1 < i < n) to be n different symmetric positive definite
matrices, which is a generalization of n different wave speeds of different constant
metrics. In addition, it is also important that we apply the same control function
f on each equation. b; are n nonzero constant coefficients. We could see this
example as a special case where the coupling only appears in the control function.
For this system, we are able to prove the partial controllability result as follows:

Theorem 2.5.1. Given T > 0, suppose that:
1. (w,T,pK,) satisfies GCC, i =1,2,--- n,
2. K1 > Ky >---> K, inw,
3. €2 has no infinite order of tangential contact on the boundary.

Then, there exists a finite dimensional subspace E C (H(Q2) x L*(Q))" such that
the system (2.5.5) is P—ezactly controllable, where P is the orthogonal projector
on E+.

As we have presented before, in order to study the low frequencies, we need to
introduce the notion of unique continuation of eigenfunctions.

Definition 2.5.2. We say the system Equation (3.1.2) satisfies the unique contin-
uation of eigenfunctions if the following property holds: Y\ € C, the only solution

_AK1¢1 = /\2¢1 m Q,

_AK2¢2 = )\2¢2 n Q,

_AKn¢n = )\2¢n m Qa

b1/€1¢1 4+ 4+ bnﬁn(bn =0 W,
is the zero solution (¢1,--- , ¢n) = 0.

Remark 2.5.3. As we present in the section 3.5.4, the unique continuation prop-
erty does mot hold true in some cases.

Hence, we are able to obtain the exact/null controllability as follows:
Theorem 2.5.4. Given T' > 0, suppose that:

1. (w,T,pk,) satisfies GCC, i =1,2,--- n,

2. Ki >Ky>---> K, inw,

3. Q has no infinite order of tangential contact on the boundary,
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4. The system (2.5.5) satisfies the unique continuation property of eigenfunc-
tions.

Then the system (2.5.5) is exactly controllable in (H}(Q2) x L*(Q))".

As we present in the previous section, we prove this theorem by similar proce-
dure. First, we apply the Hilbert Uniqueness Method, and obtian the observability
inequality: 3C > 0 such that for any solution of the adjoint system:

([ Og,v1 =01in (0,7) x €,
Or,ve = 0 in (0,T) x €,

Ok, v, =01in (0,7) x (2:5.6)
v; =0 on (0, )>< 1<]<n
k (U1(0,$),at711< 7$)7 (O m)at/UTL(O ili')) VO?
where V° € (L? x H™')", we have
T
C/O / |b1l€11}1 + -4 bn/{nvn|2dxdt > ||V0||?L2><H_1)"‘ (257)

Then we only need to prove this observability inequality (2.5.7). Looking at the
high-frequency, we prove a weak observability estimate:

T n
IVOl2x 10 < C </O /‘ij’fjvaQdfﬂdt+ HVOH?HWH?)”) - (258)
w 321

Using the argument by contradiction, we assume that the above inequality was
false, we could obtain a sequence (V%) cy such that

IVOH gy = 1, (2.5.9)
T
/ / by kg 0f 4 - 4 bk vF | Pdadt — 0,k — oo, (2.5.10)
0 w
and
V¥ By g—2yn = 0,k — o0, (2.5.11)

Here we use v¥(1 < i < n) to denote the corresponding solution of the system
Equation (2.5.6) with the initial data V%*. Since we have the assumption 2, we
know that the characteristic manifolds of each wave equation are disjoint, which
implies that

T n_T
/ / by s 0f + - -+ byrnv¥|?dadt ~ Z/ / |bik0F |Pdadt (2.5.12)
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Hence, we know that each defect measure y; associated with v¥ is zero through the
application of the propagation of the defect measures and the Geometric control
condition. This provides a contradiction with the normalized norm of initial data,
ie. ||V0’k||%L2><H*1)" = 1. Then we combine the assumption (4), we know that
the observability inequality is true. This gives us the result of the exact/null
controllability of the system (2.5.5).

Some results on unique continuation properties

As we can see in the simple example, the unique continuation properties defined in
Definition 2.5.2 hold for constant coefficient metrics. But we could also construct
a counter-example such that this unique continuation property does not hold. In
dimension 1, we assume that the metric ¢ = ¢(z)dz?. Then A, = 14, — & &
Fix the open interval (0,7) and the subinterval (a,b) C (0,7)(a > §). Now we
consider the unique continuation problem:

uf = —Nuy,
Agus = —Nuy,
uy +uy = 01in (a,b),
uy,up € HY((0,7)).

(2.5.13)

We have the following result:

Theorem 2.5.5. There exists a smooth Riemannian metric g = c(x)dx?, and two
etgenfunctions ui, up of Ay and % on (0,7) associated with eigenvalue 1 such
that uy +us =0, in (a,b) C (0,7) and uy +us #Z 0 in (0, 7).

The readers can find the detailed construction of this counter-example in the
section 3.5. Looking at the system 2.5.13, we consider the intersection of the
spectrum of two Laplacians with different metrics. Let us define the space of all
smooth metrics on the open interval (0,7) by M!. We are able to prove the
following proposition:

Proposition 2.5.6. In dimension 1, suppose that we fix the Laplacian A = % m

(0,7) with its spectrum o(A). Then the set G, = {g € M : c(A,) No(A) = 0}

is residual in M?*.

Roughly speaking, we are able to find “many” metrics in the sense of generic
properties such that the spectrum of two Laplacians with different metrics are
disjoint. Therefore, we obtain the following corollary immediately:

Corollary 2.5.7. Fiz A = L for every metric g € Gue, the system (2.5.13) has

da?’
a unique solution uy = ug = 0.
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That is to say, the unique continuation property is true “genericly”. In addition,
in dimension 2, we can also obtain the similar result:

Proposition 2.5.8. In dimension 2, suppose that we fix one metric go and the
associated Laplacian Ay, with its spectrum o(Ay,). Then the set G,. = {g € M?:
a(Ag) Na(Ay,) =0} is residual in M>.

Here M? is the space of all smooth metrics on the open domain 0 C R%2. And
for proof details, we refer to the section 3.5.4.

Comments

There are two crucial parts in this proof. We need to get the microlocal information
of each solution through the constraints on the sum of solutions. The other one is
to prove the unique continuation property. In the first part, we mainly rely on the
facts that the characteristic manifolds with different speeds are disjoint. Hence, in
the high-frequency regime, we could distinguish every solution among the sum of
them. For the second part, the main difficulty is that we have n(n > 1) equations
but with only one constraint to solve the unique continuation problem. In the
constant coefficient case, the laplacians commute with each other. So we could
apply the A for n — 1 times to obtain n — 1 constraints >, A*¢;, = 0(1 < k < n)
in w. Then we could reduce this problem into a unique continuation problem for
a single equation. However, for general metrics, the laplacians do not commute
with each other. Then this method does not work.

2.5.2 Coupled by a block-cascade structure

In this section, we mainly consider the Laplacian with constant coefficients. This
is a joint work with Pierre Lissy. In this article, we proved the controllability of a
coupled wave system with a single control and different speeds.

Motivations

To begin with, we introduce a simple example as follows:

(8252 — A)ul + Uo =0 in (O,T) X Q,
(@2 —2A)ug +uz =0 in (0,7) x Q, (2.5.14)
(02 — 2A)us = f1, in (0,7) x Q,

with the Dirichlet boundary condition and some initial data, where f is a L?
function supported in (0,7) X w. Compared with (2.5.1), we consider a block-
cascade coupling structure for the solutions. Notably, the control f is only acting
directly on ug, which itself acts on us while u; is controlled through wus.
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For this example system, the controllability from zero is equivalent to the null
controllability. Therefore, we begin with zero initial conditions. We first observe a
regularity gap among the solutions, i.e. (uy,us,uz) € H*x H? x H'. In fact, since
us satisfies a wave equation with a source term f € L*((0,T), L?), it is classical that
there exists a unique solution uz € C'([0,T], H})NC°([0,T], L?). Since us satisfies
a wave equation with a source term —us, then uy € C*([0,T), H*)NC°([0, T}, Hy).
For uy, similarly, we obtain that u; € C*([0,T], H*)NC°([0,T], H?). Now, we need
to state an extra regularity property for u;. Applying the d’Alembert operator
O, = 92 — 2A on both sides of the equation of (huy = (07 — A)u; = —uy, we
obtain that

Lo uy = —Oaus.

Since [lous = —ug, then we obtain that [y[yu; = us. We consider that [louy
satisfies a wave equation with a source term us. Therefore, we know that [ou; €
CH([0,T], H*)NC°([0,T), H}). Since Oyuy = —uy € CY([0,T), H*)NC([0, T, HY),
we know that Auy = Oyuy — Oyuy € CH([0,T], H*) N C°([0,T), H}). As a conse-
quence, we know u; € C1([0,T], H*)NC°([0,T], H?). Hence, we notice a regularity
gap (u,ug,uz) € H* x H?> x H'. One can refer to [20] for a different proof.

In addition, with zero initial conditions, we also notice that there is a compat-
ibility condition for this control problem, i.e. (—A)%*u; + Auy € H}. In fact, let us
first do some reformulation for the system. Define the transform S by

Uy U1
S U = V2 )
Us U3
where
vy = D}uy,
Vg = DtUQ, (2515)
V3 — Us3.

Moreover, (vq, v, v3) satisfies the following system:

|:|1U1 + DtQUQ =01in (O,T) X Q,
Oovs + Dyvs = 0 in (0,7) x 9, (2.5.16)
D2U3 = f in (O,T) x €.

Using the identity
—D? =200, — [, (2.5.17)

we obtain that
Divy = —(204 — Og)vy. (2.5.18)

Using(2.5.18) in the first equation of (2.5.16), we also deduce that
|:|1('U1 — 22}2) — Dt’U3 =0. (2519)
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Now, let us define
y = Dyvy — 2Dy, (2.5.20)

Then, by (2.5.20) and (2.5.19), we obtain that
Oyy — Divs = 0. (2.5.21)
We also remark that by using (2.5.17),
—D?v3 = (20, — Oy)vs. (2.5.22)

Hence, we deduce that

Let us now express y with respect to the original variables uy, us, uz. From (2.5.20),
(2.5.15) and the first equation of (2.5.14), we obtain that

y = Dy, — 2Dy
= D}uy — 2D?u,
= D}(D}uy — 2uy)
= D?(—Auy + ug — 2uy)
= DX(—Au; — up).

Combining with the second equation of (2.5.14), we obtain
y = (=A)%u; + Auy — us.

Now, we define

Then, y satisfies
0. = f. (2.5.24)

With zero initial conditions, we obtain that § € H{, ie, (—A)?u; + Auy € Hj.
Considering the regularity of u; and uy, we know that (uy,us) € H* x H?. Hence,
we can only obtain (—A)?u; +Auy € L?. Therefore, we notice a regularity gap be-
tween these two conditions. This gap implies that when we choose the appropriate
state spaces, we need to consider not only the regularity of the solutions but also
the compatibility conditions associated with the coupling structure. This is quite
different from the system without coupling, and even different from the wave sys-
tem coupled by the same speed or coupled parabolic systems. To our knowledge,
this is one feature for such kind of coupled wave systems. This motivates us to
consider a more general system with the same type of coupling structure.
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The controllability for a wave system coupled with different speeds

We aim to deal with some controllability properties of the following type of coupled
wave systems:

(02 — DA)U + AU =0bf1, in (0,7) x Q,
U n (0,7) x 99, (2.5.25)
(U, 0:U)li=0 = (U°UY) inQ,

with here

([ dyId,, 0 (0 A - (0
D_< ' dQIdm)nm,A_(OA2)nxn,andb_(b>m1,(2.5.26)

where n = ny + ng and dy # dy. Ay € My, 0, (R) and Ay € M,,,(R) are two given
coupling matrices and b € R"2. A
uj

For j = 1,2, we use U; = : to denote the solutions corresponding to
ul

the speed d; respectively. Let us erjnphasize the following important and crucial

properties of System (2.5.25): all coefficients are constant, the coupling is in a

block-cascade structure (notably, the control f is only acting directly on Us, which

itself acts on U; through the matrix A;), and we restrict to the case of a scalar

control (z.e. f € L*((0,T),R™) with m = 1).
Equivalent operator Kalman rank condition

In the following proposition, we give an equivalent statement of the operator
Kalman rank condition associated with System (2.5.25), which is very specific
to our particular coupling structure and the fact that we have a single control.

Proposition 2.5.9. We use the same notations as in Definition 2.5.26. We denote
by L = [-DA+ A|B] the Kalman operator associated with System (2.5.25). Then,
Ker(K*) = {0} is equivalent to satisfying all the following conditions:

1. ny = 1,’
2. (Ag, B) satisfies the usual Kalman rank condition (See Definition 2.2.3);
3. Assume that Ay = o = (aq, -+ ,ap,). Then VA € o(—A), « satisfies

ng—2 n2
o <Z (dy — do)* X > @ ATF 4 (dy — dg)”zl)\mlldm) b0,

k=0 j=k+1
(2.5.27)
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where (a;)o<j<n, are the coefficients of the the characteristic polynomial of
the matriz As, i.e. x(X) = X™ + Z?iglanj, with the convention that
Qn, = 1.

With this equivalent condition, we are able to simplify the system into

((Ohug + 330 auf =01n (0,T) x Q,
(ou? +u3 =01in (0,7) x Q,

Cou?, _y +uz, =01in (0,T) x Q,
|:|2u,,212 — Z;Zil an2+1,ju§ = flw n (O, T) X Q,
up =0,u5 =0 on (0,T) x 9,1 < j < ny,

(2.5.28)

1 ,,2 2 _ (1,0 20 2,0\
(ula Ug, - aum)’t:o - (ul ; Uy 171' ’ '2a1un2) m Qv
1 2 2 _ (L ; 2,1\ :
\ (atuhatuh”' 7atun2)‘t=0 - (ul s Up 5 ,un2> in €.
Here we take ny =1, Ay = (o, -+ ,a4,0,---,0) and
0 1 0 0 0
0 0o . 0
Ay = , and b =
—an . e —a2 _a/l 1

Appropriate state spaces

Since we consider the control problem in a domain 2 with boundary, it is natural
for us to introduce the following Hilbert spaces Hg(A).

Definition 2.5.10. We denote by (ﬁf)jeN* the non-decreasing sequence of (pos-
itive) eigenvalues of the Laplace operator —A with Dirichlet boundary condition,
repeated with multiplicity, and (e;)jen+ an orthonormal basis of L*(Q) made of
eigenfunctions associated with (6?)]@\,*:

—Ae; = fle;,  |lejll = 1.

For any s € R, we denote by H*(Q2) the usual Sobolev space and by H&(A) the
Hilbert space defined by

HE(A) = {u = Z aje;; 2(1 + B7)%|a;|* < oo} (2.5.29)

JEN* JEN*

Under this particular structure of coupling, we introduce appropriate com-
patibility conditions for System (4.1.6). For r = 0,1, and (u,vy,- - ,v,,) €
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HP P (Ap) x HEP U (Ap) x -+ x HL(Ap), let us define a special function
ur . by

comp

Ur _ ((—dlA)n2_8+1U

comp
no—s s na—s—k o — s — k
1535 D D] (i) [V INEETAN T

k=0 j=1 =0

2

ng—2s+j no—s—=k
ajdad no—s—=k o5 — o
Z (dy — : dy 1k+1( l )(_d2A) 2ok lUj+k+l> .

(2.5.30)
Using this special function U, let us denote by H; the following space:

comp?

k=0

Hy = {(u,v1,- - ,vp,) € HSQ_‘S“”(AD) X HSTH’"(AD) X -+ x HH(Ap)
St Ul € HA(Ap)}.

(2.5.31)
Definition 2.5.11 (State space). The state space for System (4.4.1) is defined by

Hl X 7‘[0.
The two conditions
1,0 20
Uclomp< Up U 5, ng) S HQ(AD)
1,1 21
Ugomp( Up Uy 5y nz) S HQ(AD)

are called the compatibility conditions for the controllability of System (4.4.1).
With these well-prepared spaces, we obtain the following result:
Theorem 2.5.12. Given T > 0, suppose that:
1. (w,T,pg,) satisfies GCC, i =1,2.
2. €2 has no infinite order of tangential contact with the boundary.

3. The Kalman operator K = [—~DA + A|B] associated with System (4.1.1)
satisfies the operator Kalman rank condition, i.e. Ker(K*) = {0}.

Then the system (4.1.1) is exactly controllable.
We prove the above theorem within three steps.

1. At the first, we simplify the system (2.5.25), using the Brunovsky normal
form. This is based on the Proposition 2.5.9 and we only need to prove the
exact/null controllability for the simplified system (2.5.28).
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2. At the second step, we use the iteration schemes to obtain the compatibility
conditions associated with the coupling structure in the system (2.5.25).
Therefore, we prepare the appropriate state spaces for the controllability of
the system (2.5.28).

3. In the final step, we use Hilbert uniqueness method to derive the observ-
ability inequality and then we follow the similar procedure as we did in
the previous section 2.5.1. We establish a weak observability inequality and
prove this weak observability inequality by the argument of contradiction
and the propagation of the defect measures for systems. At last, the unique
continuation property is given by the Kalman rank condition.

Comments

The main difficulty here is that the block-cascade coupling increases the difficulty
for us to describe the proper Hilbert spaces for the states. As we presented in the
example, only describing the regularity of each solution is not enough to construct
the state spaces. The crucial part in the proof of the main result is to obtain
the compatibility conditions associated with the coupling structure. The coupling
with different speeds play a very important role in this problem.

2.5.3 Some comments on further developments

Based on the previous results, we already solved two special cases of the interior
controllability for the coupled wave systems. Then, we could think about some
more general coupling structures. For example, in the system (2.5.25) with

dlfdn 0 AH A12 7 bl
D= ! aA = ’ d b - !
( 0 d2ld”2 )nxn < A21 A22 )nxn o ( 62 )nxm

(2.5.32)
In this case, the coupling is in a very general form and moreover, we consider some
multi-control functions (i.e. f € L*((0,T),R™) with m > 1). In such example,
there are two types of difficulties. The first one is to find a algebraic equivalent
condition for the abstract operator Kalman rank condition to simplify the coupling
structure. The second one is to construct the appropriate state spaces, especially
find the compatibility conditions under this setting.

96



Chapter 3

Simultaneous Control of Wave
Systems

3.1 Introduction

Let Q C R?, d € N*, be a bounded, and smooth domain. For positive constants «
and [, let k;;(z) : Q@ — R, 1 <14,j <d be smooth functions which satisfy:

kij(a) = kji(x), o]’ < D kyla)6; < BIEP, Vo € Q,¥E € R (3.1.1)

1<i,j<d

Define K(z) to be the symmetric positive definite matrix of coefficients k;;(z).

Moreover, we define the density function x(z) = m. We also define the

Laplacian by Ax = ﬁdiv(/{(xﬂ(v-) on {2 and the d’Alembert operator Ux =
0? — Ag on Ry x Q. We assume that w is a nonempty open subset of Q. We
consider the interior simultaneous controllability problem for the following wave

system:
(

DKlul = blfl(O,T)(t)]-w(m) in (O,T) X Q,
Ox,uz = baflor)(t)1s(z) in (0,7T) x €,

: , (3.1.2)
Og,tn = by fLo,r)(t)1e(x) in (0,T) x Q,

u;j =0 on (0,7) x 02,1 <j<n,

ui(0,2) = uj(x),  Ou;(0,2) = uj(z), 1 < j <n.

\
Here, we choose K;(1 < i < n) to be n different symmetric positive definite
matrices. The state of the system is (uy, dyuq, -+, up, dsu,) and f is our control
function. b; are n nonzero constant coefficients. In this chapter, we mainly consider
the exact controllability for the system Equation (3.1.2) given by the following
definition.
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Definition 3.1.1 (Exact Controllability). We say that the system Equation (3.1.2)
is exactly controllable if for any initial data (u¥,u}, -+ ,ul, ul) € (H () x L*(Q))"

and any target data (UY,UL,--- UL, UL € (Hg(Q2) x L*(Q))", there exists a
control function f € L*((0,T) x w) such that the solution of the system Equa-

tion (3.1.2) with initial data (uy, Oy, U, Optin)|i=0 = (ud, -+ ,ul) satisfies
(Ul, atu17 s, Un, atun)|t=T
= (U{)7 T 7Ué)

Moreover, we also consider the partial exact controllability for the system Equa-
tion (3.1.2) given by the following definition.

Definition 3.1.2. Let II be a projection operator of (Hi(2) x L*(Q))". We say
that the system Equation (3.1.2) is II—exactly controllable if for any initial data
(W, ug, - ud ut) € (Hy(Q)x LA(Q))" and any target data (UY, UL, --- U, UL €
(HY(Q) x L*(Q))", there exists a control function f € L*((0,T) x w) such that
the solution of Equation (3.1.2) with initial data (uy, Oy, - U, Optin)|i=0 =
(¥ ut, -+ ul ul) satisfies

H(ula 815“17 cry Unpy, atun)|t:T = H(U{)7 U117 T U’r?’ U';)

If we only impose that T1(uq, Opuy, -+, Up, Otiy)|i=r = 0, we say that the system
Equation (3.1.2) is II—null controllable.

Proposition 3.1.3. For System Equation (3.1.2), the II—null controllability is
equivalent to the 11—exact controllability.

Proof. We follow closely the proof of [17, Theorem 2.41]. It is clear that (II—exact
controllability) = (II—null controllability). So we focus on the proof of the
converse. We define the operator

o = RN . (3.1.3)

The system Equation (3.1.2) is equivalent to

Oy = —ay + Bfl(O,T) (t)lw(x), y|t=0 = ?J(())v (3-14)
where
Uy ul 0
Oy ul by
y = , y(0) =1 : and B= | :
U, ug 0
Oy, ul b,
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Let us consider S(t) the semi-group generated by 7. Let y° € (H}(Q2) x L?(Q2))"
and y' € (H}(Q2) x L*(Q))". Since the system Equation (3.1.2) is II—null con-
trollable, we obtain that there exists f such that the solution y of the Cauchy
problem

0§ = —§+ BfLon(t)1u(),ylizo = v = S(=T)y' (3.1.5)
satisfies [1g(7T") = 0. For the Cauchy problem
Oy = =y + Bf 1) (t)1u(x), yli=o = o°, (3.1.6)
the solution y is given by
y(t) = g(t) + St —T)y', vt € [0,T). (3.1.7)

Hence, we obtain that y(T') = §(T)+y'. In particular, we know that ITy(7") = [Ty’
since IIg(T)) = 0. We now obtain the II—exact controllability for the system
Equation (3.1.2). O

According to the Hilbert Uniqueness Method of J.-L. Lions [38], the controlla-
bility property is equivalent to an observability inequality for the adjoint system.
In particular, when we focus on our system Equation (3.1.2), the exact controlla-
bility is equivalent to proving the following observability inequality: 4C' > 0 such
that for any solution of the adjoint system:

([ Og,vy =0in (0,7) x Q,
DKZUQ =01in (O,T) X Q,

: , (3.1.8)
Ok, v, =01in (0,7) x Q,
)

v;=0 on (0,7)x0Q,1<j<n,

v;(0,2) = v?(:r: . Ow;(0,z) = v}-(m),l <j<n,

we have
T n
C [ [ bamions et b Pzt = Y601+ ). (309)

For the partial controllability, we have a similar result. The II—exact controlla-
bility of the system Equation (3.1.2) is equivalent to proving the following observ-
ability inequality: 3C' > 0 such that for any solution of the adjoint system:

( Og,v1 =01n (0,7) x €,
O,ve = 01in (0,7) x Q,

: ' (3.1.10)
Ok, v, =01in (0,7 x £,

v;=0 on (0,7)x00,1<j<n,
[ (01(0,2), 0pv1(0, ), - -+, v,(0, 2) O, (0, 7)) = Vo,
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where V9 € (L? x H™')" and IT* is the adjoint operator of the projector II, we
have

T
C/ / |b1/{1v1 4+ -+ bn/{n’l}n|2dl’dt Z ||H*V0||?L2><H_l)”’ (3111)
0 w

This is an easy consequence of Proposition 3.1.3, the conservation of energy for
system Equation (3.1.2) and [7, Chapter 4, Proposition 2.1].

In order to study the observability inequality, a classical method is to follow
the abstract three-step process initialized by Rauch and Taylor [46](see also [10]).
It can be detailed as follows:

e Firstly, get the microlocal information on the observable region. Argue by
contradiction to obtain different kinds of convergence in subdomain (0, 7") X w
and the whole domain (0,7) x 2.

e Secondly, use microlocal defect measure (which is due to Gérard [23] and
Tartar [47]), or propagation of singulaties theorem (see [26] Section 18.1) to
prove a weak observability estimate:

n

> (IPl1ze + (v 7-)

=1
T n n

S C(/ / |ijﬂjvj|2dxdt + Z(HU?H%{_I + ||Uz1||§{—2))
0 e = i=1

e Thirdly, use unique continuation properties of eigenfunctions to obtain the
original observability inequality Equation (3.1.9).

For the high frequency estimates, a very natural condition is to assume that the
control set satisfies the Geometric Control Condition(GCC).

Definition 3.1.4. For w C Q and T > 0, we shall say that the pair (w,T,pk)
satisfies GCC' if every general bicharacteristic of px meets w in a time t < T,
where pg 1s the principal symbol of Uk .

We will give the definition of bicharacteristics in Section 3.3. This condition
was raised by Bardos, Lebeau, and Rauch [9] when they considered the controlla-
bility of a scalar wave equation and has now become a basic assumption for the
controllability of wave equations. In [14], the authors show that the geometric con-
trol condition is a necessary and sufficient condition for the exact controllability of
the wave equation with Dirichlet boundary conditions and continuous boundary
control functions. In order to study the low frequencies, we need to introduce the
notion of unique continuation of eigenfunctions.

60



CHAPTER 3. SIMULTANEOUS CONTROL OF WAVE SYSTEMS

Definition 3.1.5. We say the system Equation (3.1.2) satisfies the unique contin-
uation of eigenfunctions if the following property holds: Y\ € C, the only solution

(gbh U agbn) S (H&(Q))n Of

—AK1¢1 = >\2¢1 m Q,

_AK2¢2 = /\2¢2 m Q,

_AKn¢n = /\2¢n in Qa

bik1dr + -+ + bpkingn =0 in w,
is the zero solution (¢, ,¢,) = 0.

There is a large literature on the controllability and observability of the wave
equations. Several techniques have been applied to derive observability inequalities
in various situations. This chapter is mainly devoted to multi-speed wave systems
coupled by the control functions only. For other interesting situations, we list some
of the existing results and references:

e For single wave equation, it is by now well-known that Bardos, Lebeau,

and Rauch [10] use microlocal analysis to prove the Equation (3.1.9)-type
observability inequality for a scalar wave equation. Other approaches for
proving it can also be found in the literature, for example, using multipliers
[38, 29], using Carleman estimates [25, 11|, or completely constructive proof
[30], etc.

Although we now have a better picture on the controllabilty of a single wave
equation, the controllability of systems of wave equations is still not totally
understood. To our knowledge, most of the references concern the case of
systems with the same principal symbol. Alabau-Boussouira and Léautaud
[5] studied the indirect controllability of two coupled wave equations, in which
their controllability result was established using a multi-level energy method
introduced in [2], and also used in [3, 4|. Liard and Lissy [37], Lissy and
Zuazua [40] studied the observability and controllability of the coupled wave
systems under the Kalman type rank condition. Moreover, we can find other
controllability results for coupled wave systems, for example, Cui, Laurent,
and Wang [19] studied the observability of wave equations coupled by first
or zero order terms on a compact manifold. The microlocal defect measure
when dealing with the single wave equation can also be extended to a system
case. One can refer to Burq and Lebeau for the microlocal defect measure
for systems [15].

As for multi-speed case, Dehman, Le Roussau, and Léautaud considered
two coupled wave equations with multi-speeds in [21]. More related work
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is given by Tebou [48|, in which the author considered the simultaneous
controllability of constant multi-speed wave system and derived some result
in a semilinear setting in [49].

3.1.1 Plan of the chapter

The chapter is organized as follows. Our main results are in Section 3.2 and
Section 3.3 is devoted to introducing some geometric preliminaries. We include
the descriptions of the boundary points, and give the precise definition of general
bicharacteristics and the order of tangential contact with the boundary.

In Section 3.4, we focus on the high frequency estimates. Subsection 3.4.1
is devoted to introducing the microlocal defect measure and its basic properties,
which is also the main tool for our proof. Subsection 3.4.2 deals with the partial
controllability, and Subsection 3.4.3 is aimed to recover the exact controllability
result in the whole energy space of initial conditions with the help of the unique
continuation properties of eigenfunctions. In these two sections, we prove the
Theorem 3.2.1, and Theorem 3.2.5 respectively.

In Section 3.5, we plan to deal with low frequency estimates, mainly discussing
about the unique continuation properties of eigenfunctions. Subsection 3.5.1 pro-
vides a counterexample to show that only assuming the hypotheses in Theo-
rem 3.2.1 cannot ensure the unique continuation properties of eigenfunctions.
Then, we add some stronger assumptions to obtain the unique continuation prop-
erty. The first attempt is to require an analyticity condition, which is the exam-
ple in Proposition 3.5.3. The other attempt is to require constant coefficients in
Subsection 3.5.2 and Subsection 3.5.3, which is stated in Theorem 3.2.8. Subsec-
tion 3.5.4 is about generic properties of metrics which ensure the unique continu-
ation in dimension 1 and 2.

In Section 3.6, we deal with the constant coefficient case with multiple control
functions. We also discuss the corresponding Kalman rank condition in this setting.

In Section 3.7, we include the proof of the equivalent condition of the Kalman
rank condition in the case of multiple control functions.

3.1.2 Ideas of the proof

In our chapter, we prove the controllability result by applying the Hilbert unique-
ness method to prove the observability inequality of the adjoint system. In order
to study the observability inequality, we always use an argument by contradic-
tion. First, we try to prove a weak observability inequality by adding some low
frequency part. To obtain the original observability inequality, we need to analyse
the invisible solutions in the subdomain w x (0,7") by proving the unique continua-
tion properties of eigenfunctions. In section 4, we discuss some generic properties.
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We follow the ideas given by Uhlenbeck [51], using the transversality theorem to
obtain generic properties.

3.2 Main results

In this chapter, we mainly study the exact controllability for the system Equa-
tion (3.1.2) and discuss the optimality of the given conditions. On the other hand,
when we consider the constant coefficient case, we associate the controllability
with the Kalman rank condition. Instead of considering the exact controllability,
we can only consider the high frequency estimates to obtain a partial result. One
can also see similar finite codimensional controllability results, for instance, in [19]
and [41].

Theorem 3.2.1. Given T > 0, suppose that:
1. (w,T,pk,) satisfies GCC, i =1,2,--- n,
2. Ki >Ky>--->K, inw,
3. €2 has no infinite order of tangential contact on the boundary.

Then, there exists a finite dimensional subspace E C (H(2) x L*(Q))" such that
the system Equation (3.1.2) is P—exactly controllable, where P is the orthogonal
projector on E+.

We will explain the concept of the order of contact in the Section 3.3.

Remark 3.2.2. We say that K|, > K, in w if and only if Vo € w, ¥¢ € R? and
E£0, (6K (x)€) > (€, Ko(x)E), where (-,-) denotes the inner product of R%.

Remark 3.2.3. The Assumption (2) can be generalized as follows: let o be a
permutation of {1,2,--- n}, Ky > Kg@) > -+ > Ky inw.

Remark 3.2.4. The same result holds for the laplacian operator

Aser = ﬁdiu(ﬁ(x)mx)v-),

where we only assume that k € C*(§2) without the restriction k(r) = ————.
Vet (K (@)

To obtain the exact controllability, we need more assumptions on the low fre-
quency part.

Theorem 3.2.5. Given T > 0, suppose that:
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1. (w,T,pk,) satisfies GCC, 1 =1,2,--- ,n,
2. K1>K2>>Kn inw,
3. €1 has no infinite order of tangential contact on the boundary,

4. The system Equation (3.1.2) satisfies the unique continuation property of
eigenfunctions.

Then the system Equation (3.1.2) is exactly controllable in (H(2) x L*(Q))™.

Now, we consider the particular case of constant coefficients. Define the diag-
dy by
onal matrix D = and B = : . We use A to denote the
d,, b,
canonical Laplace operator. Now we consider the simultaneous control problem
for the system:

9;U — DAU = Bf11)(t)1,(z) in (0,T) x Q, (3.2.1)

Uy
where U = : . This system can be written as

Unp

( (8752 — dlA)ul = blf]-(O,T)(t)]-w(x) n (O,T) X Q,

(0F — dyA)uy, = by f101)(t) () in (0,T) x Q,
u; =0 on (0,7)x0Q,1<j<n,

| 4;(0,2) = uf(z), Oy (0,2) = uj(z),1 < j<n.

First, we introduce the Kalman rank condition for the system Equation (3.2.1).

Definition 3.2.6 (Kalman rank condition). Define [D|B] = [D""'B|---|DB|B].
We say (D, B) satisfies the Kalman rank condition if and only if [D|B] has full
rank.

Remark 3.2.7. In our setting, (D, B) satisfies the Kalman rank condition if and
only if all d; are distinct and b; # 0, 1 < j < n(See [6, Remark 1.1]).

Theorem 3.2.8. Given T > 0, suppose that:
1. (w,T,pg,) satisfies GCC, i =1,--- n.

2. Q has no infinite order of tangential contact on the boundary.

64



CHAPTER 3. SIMULTANEOUS CONTROL OF WAVE SYSTEMS

Then the system Equation (3.2.1) is exactly controllable in (HY(Q)) x L*(Q))™ if
and only if (D, B) satisfies the Kalman rank condition.

Remark 3.2.9. Let Ty be the controllability time corresponding to the wave equa-
tion with unit speed of propagation. Then the controllability time in the Theo-
rem 3.2.8 satisfies T > Tymax{——;j =1,2,--- ,n}.

vz

In advance, we consider the case with multiple control functions fi, fo, -+, fn(1 <
m < n). To be more specific, we consider the system:

O}U — DAU = BF1(1)(t)1,(z) in (0,7) x €,
Ulaga = 0, (3.2.2)
(U, 8tU)|t:0 - (UO, Ul)

fi bit -+ bim
where D = diag(dy,ds,--- ,d,), ' = : ,and B = - . We

can also define the Kalman rank condition rank|[D|B] = n. Here we recall that

[D|B] = (D" 'B|D"2B|---|DB|B). We have the following theorem:
Theorem 3.2.10. Given T > 0, suppose that:

1. (w,T,pg,) satisfies GCC, i =1,--- n.

2. Q has no infinite order of contact on the boundary.

Then the system Equation (3.2.2) is exactly controllable if and only if (D, B) sat-
isfies the Kalman rank condition.

Remark 3.2.11. Since all coefficients and geometries are smooth, the use of the
microlocal defect measures could have been replaced by propagation of singularities
arguments.

3.3 Geometric Preliminaries

This part has many repeated contents as we have already presented in
Section 2.3 of Chapter 1.

Let B = {y € R?: |y| < 1} be the unit ball in R% In a tubular neighbourhood
of the boundary, we can identify M = Q x R; locally as [0, 1[x B. More precisely,
for z € M = Q x Ry, we note that z = (z,y), where x € [0,1] and y € B and
z € OM = 09 x R, if and only if z = (0,y). Now we consider R = R(z,y, D,)
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which is a second order scalar, self-adjoint, classical, tangential and smooth pseudo-
differential operator, defined in a neighbourhood of [0, 1] x B with a real principal
symbol r(x,y,n), such that

g—; # 0 for (x,y) € [0,1[x B and n # 0. (3.3.1)

Let Qo(z,y,D,), Q1(x,y,D,) be smooth classical tangential pseudo-differential
operators defined in a neighbourhood of [0, 1] x B, of order 0 and 1, and principal
symbols qo(z,y, 1), ¢1(x,y,n), respectively. Denote P = (9% + R)Id + Qu0, + Q1.
The principal symbol of P is

p=—+r(z,y,n). (3.3.2)

We use the usual notations T'M and T*M to denote the tangent bundle and
cotangent bundle corresponding to M, with the canonical projection 7

7:TM(or T"M) — M.

Denote 79(y,n) = r(0,y,n). Then we can decompose T*9M into the disjoint union
E UG UH, where

E={ro<0}, G={ro=0}, H={r >0} (3.3.3)

The sets £, G, H are called elliptic, glancing, and hyperbolic set, respectively. De-
fine Char(P) = {(z,y,&,n) € T*R¥ |57 : €2 = r(z,y,&,n)} to be the characteristic
manifold of P. For more details, see [15] and [13].

3.3.1 Generalised bicharacteristic flow

We begin with the definition of the Hamiltonian vector field. For a symplectic
manifold S with local coordinates (z,¢), a Hamiltonian vector field associated
with a real valued smooth function f is defined by the expression:

g, .90 0f9
I=9¢0:  9z0C

Considering the principal symbol p, we can also consider the associated Hamilto-
nian vector field H,. The integral curve of this Hamiltonian H,, denoted by 7,
is called a bicharacteristic of p. Our next goal is to study the behavior of the
bicharacteristic near the boundary. To describe the different phenomena when a
bicharacteristic approaches the boundary, we need a more accurate decomposition
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of the glancing set G. Let 11 = 9,7|,—0. Then we can define the decomposition

g = U]oiz G’, with

G* = {(y,n) : roly,n) = 0,r1(y,m) # 0},
G* ={(y,n) : roly,n) = 0,71(y,n) = 0, Hy,(r1) # 0},

G ={(y,m) : roly,m) = 0, H] (r1) = 0,¥j < k, H}. M (ry) # 0},

G> ={(y,n) : ro(y,n) = 0, H} (r1) = 0,Vj}.

Here Hﬁo is just the vector field H,, composed j times. Moreover, for G?, we can
define G** = {(y,n) : ro(y,n) = 0,47 (y,n) > 0}. Thus G = G>* UG>~. For
p € G>T, we say that p is a gliding point and for p € G*~, we say that p is a
diffractive point. For p € G, j > 2, we say that a bicharacterisric of p tangentially
contact the boundary {z = 0} x B with order j at the point p.

Consider a bicharacteristic v(s) with 7(v(0)) € M and w(v(sg)) € OM be
the first point which touches the boundary. Then if v(sy) € H, we can define
EE(y(s0)) = £+/r0(7(s0)), which are the two different roots of £2 = ry at the point
v(s0). Notice that the bicharacteristic with the direction ¢~ will leave the domain
M while the bicharacteristic with the other direction £ will enter into the interior
of M. This leads to a definition of the broken bicharacteristics(See [26] Section
24.2 for more details):

Definition 3.3.1. A broken bicharacteristic of p is a map:
seI\D w— ~(s) € T*M\{0}
where I is an interval on R and D s a discrete subset, such that

1. If J is an interval contained in I\D, then for s € J — 7(s) is a bicharac-
teristic of p in M.

2. If s € D, then the limits v(s*) and v(s™) exist and belongs to TXM\{0} for
some z € OM, and the projections in TXOM\{0} are the same hyperbolic
point.

If v(sp) € G, we have different situations. If v(sq) € G**, then v(s), locally
near sq, passes transversally and enters into T*M immediately. If y(sy) € G*~
or y(sp) € G* for some k > 3, then ~(s) will continue inside T*9M and follow
the Hamiltonian flow of H_,,. To be more precise, we have the definition of the
generalized bicharacteristics(See |26] Section 24.3 for more details):
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Definition 3.3.2. A generalized bicharacteristic of p is a map:
se\D—~(s)eT"MUG

where I is an interval on R and D s a discrete subset I such that po~y =0 and
the following properties hold:

1. v(s) is differentiable and ?TZ = H,(v(s)) if v(s) € T*M or ~(s) € G>™.

2. Everyt € D is isolated i.e. there exists € > 0 such that v(s) € T*M\T*OM
if 0 < |s —t| < e, and the limits v(s*) are different points in the same
hyperbolic fiber of T*OM .

3. y(s) is differentiable and g—z = H_,,(v(s)) if v(s) € G\G>™.

Remark 3.3.3. We denote the Melrose cotangent compressed bundle by "T*M and
the associated canonical map by j : T*M — *T*M. j is defined by

i, y,&n) = (z,y,28,n).

Under this map j, one could see v(s) as a continuous flow on the compressed
cotangent bundle *T*M. This is the so-called Melrose-Sjostrand flow.

From now on we always assume that there is no infinite tangential contact
between the bicharacteristic of p and the boundary. This is in the meaning of the
following definition:

Definition 3.3.4. We say that there is no infinite contact between the bicharac-
teristics of p and the boundary if there exists N € N such that the gliding set G

satisfies
N
G=J¢.
j=2

It is well-known that under this hypothesis there exists a unique generalized
bicharacteristic passing through any point. This means that the Melrose-Sjostrand
flow is globally well-defined. One can refer to [42] and [43] for the proof.

3.4 High Frequency Estimates

3.4.1 Microlocal defect measure

In this section, we introduce the microlocal defect measures based on the article by
Gérard and Leichtnam [24] for Helmoltz equation and Burq [13] for wave equations.
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Let (u®)ren € L2 (R L2(€2)) be a bounded sequence, converging weakly to 0 and

loc

such that .

Pu® =o(l)g-1,

) (W (3.4.1)

u ’BM =0.
Let u; be the extension by 0 across the boundary of 2. Then the sequence u;
is bounded in L2 (Ry; L?(R?)). Let A be the space of classical polyhomogeneous
pseudo-differential operators of order 0 with compact support in R, x R? (i.e,
A = @Ay for some p € C(R; x RY)). Let us denote by M™* the set of non
negative Radon measures on S*(R; x RY). From [13, Section 1|, we have the

existence of the microlocal defect measure as follows:

Proposition 3.4.1 (Existence of the microlocal defect measure). There ezists a
subsequence of (u¥) (still noted by (u*)) and p € M* such that

VA€ A, klim (AuF, uF) 2 = (p, 0(A)), (3.4.2)
—00
where o(A) is the principal symbol of the operator A (which is a smooth function
homogeneous of order 2 in the variable &, i.e. a function on S*((R; x R%)).

Remark 3.4.2. In general, the existence of the microlocal defect measure does not
rely on the system Equation (3.4.1). For any bounded sequence u* in L2, which
is weakly convergent to 0, one is able to construct the microlocal defect measure
associated with the sequence (see [13] for more details).

Remark 3.4.3. In the article [31], Lebeau constructed the microlocal defect mea-
sure in another approach (see [31, Appendice] for more details). In the article
[15], Burq and Lebeau proved the similar existence result [15, Proposition 2.5] in
a setting of systems, which can be seen as an extension of Proposition 3.4.1

From [13, Théoréme 15|, we have the following proposition.

Proposition 3.4.4. For the microlocal defect measure pu defined above associated
with the system Equation (3.4.1), we have the following properties.

o The measure p is supported on the intersection of the characteristic manifold
with Rt X Q,

supp(p) © {(t, 2, 7,€);0 € 7, 7° = "€ K ()¢}, (3.4.3)
e The measure ji does not charge the hyperbolic points in OM ,
p="0 onm, (H),

where T, : T*(RT™Y) — YT M (the Melrose cotangent compressed bundle).
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o The measure p is invariant by the generalised bicharacteristic flow.

Remark 3.4.5. Notice first that in [13, Section 3/, the author considered the case
of solutions to the wave equation at the energy level (bounded in H},, and hence
was considering second order operators. However, it is easy to pass from H' to
L? solutions by applying the operator d; and conversely from L? to H' by applying
the operator 0; ', i.e. if v is an L? solution, considering the solution u associated
to ((—AD)_l(é?tv li=0), v \tzo), which of course satisfies Oyu = v. This procedure
amounts to replacing the test operators of order 0 A by the test operator of order
2, B=—0,0A00,, but since 7> does not vanish on the characteristic manifold, it

1s an elliptic factor which changes nothing.

Remark 3.4.6. Notice also that due to discontinuity of the generalised bicharac-
teristics when they reflect on the boundary at hyperbolic points (the points corre-
sponding to the left and right limits at s € D), in Definition 3.3.1, the generalised
bicharacteristic flow is not well defined (there are two points above any points
corresponding to s € D). However, since the measure p does not charge these hy-
perbolic points, this flow is well defined p almost surely and the invariance property
makes sense. Notice also that in [13, Appendice], weaker property than invariance
(namely that the support is a union of generalised bicahracteristics) is proved. The
general result follows from this weaker result by applying the strategy in [31]. In
any case, for the purpose of the present chapter, the invariance of the support
would suffice.

3.4.2 Proof of the Theorem 3.2.1

Let V = (v),v],-- 0%, v}). We introduce the following spaces:

)V Tn

e We define K; = (Hj () x L*(Q))" endowed with the norm
IVIE, =3 [ (K905 - 90g + ol ) da
j=1
e We define Ky = (L*(Q2) x H1(Q2))" endowed with the norm

n
.y / o0t < v, Tl >
=1

where
Ty, : HH(Q) — Hi(Q)
f—w

is defined as the unique solution w € H{ () to —édiv(mKiVTKiw) =f.
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e We define K 1 = (H'(2) x D(—A)")" endowed with the norm
HVHIZC_l = Z < U?>TK¢U? >H—1,Hé + < vilafKivil >D(_AKi)*’D(_AK¢)’
i=1

where D(—A) is the domain of the Laplacian operator with zero Dirichlet
boundary condition and D(—A)’ is its dual space, and
Tk, : D(—=A) — D(—A)
fw

is defined as the unique solution @ € D(—A) to (=Ag,)*Tk, i = f.

Remark 3.4.7. For any j € {1,2,--- ,n}, D(—Ag;) = D(-A).

Recall the considered control system:

(

DKlul = blf]_(g’T)(t)].w(ZE) in (O,T) X Q,
Okyuz = baf 1o,y (t)1u(x) in (0,7) x Q,
: _ (3.4.4)
DKnun = bnfl(O,T)(t)]-w(x) n (OaT) X Qa
u; =0 on (0,7)x0Q,1<j<n,

\ (w1, O, -+ - U, Optin)|1=0 = U (0).

Consider the homogeneous system:

( Og,vf =0in (0,T) x Q,
Ok, vl =0in (0,7T) x Q,

{ (3.4.5)

O, v =0 in (0,7) x Q,
v]f-bzo on (0,7) x 09,1 < j <n,
(U{Z, (9,51)?, cee Uh (9t’(}7}1‘)]t:0 = Vh(O) € ICl.

) n?

Now, let us define

E={V"0) € Ky : (bipvl + - 4+ bkt 2) = 0, for any t € (0,T),z € w},
(3.4.6)
where (vf,--- ,0") is the solution to the homogeneous system Equation (3.4.5).

Hence, F is a closed subspace in ;. Denote the orthogonal projector operator
P:K; — E+. And the adjoint system of System Equation (3.4.4) is the following
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system:
Og,v1=01n (0,7) x £,
DK2U2 =01in (O,T) X Q,

; . (3.4.7)
Ok, v, =01in (0,7) x Q,

v;=0 on (0,7)x00Q,1<j<n,
(U17 atvl? o 7Un7atvn)|t=() = P*V(O) € ’CO.

\

Using inequality Equation (3.1.11), the P—exactly controllability of the system
Equation (3.4.4) is equivalent to proving the following observability inequality:

T
C’/ / b1k101 + - -+ A bykinvy, | dadt > 1PV (0)|[%,, (3.4.8)
0 w
where (v1,- -+ ,v,) is the solution to the adjoint system Equation (3.4.7).

Step 1: Establish a weak observability inequality

First we want to prove a weak inequality:
T
IPV(0)lk, <C (/ /\bmm Foe o byknU| A dadt + HP*V(O)H,QC_1>, (3.4.9)
0 w

If the above inequality was false, we could get a sequence (P*XN/O’“) zen such that

IPViII%, = 1, (3.4.10)
T
/ / by kg vf 4 -+ bk vF | Pdzdt — 0,k — oo, (3.4.11)
0 w
and N
IPVEIl%_, — 0,k — oo. (3.4.12)

Here we use v¥(1 < i < n) to denote the corresponding solution of the system
Equation (3.4.7) with the initial data P*V*. Hence, we obtain n bounded se-
quences {vF}ren(l < i < n). Let u; be the defect measure associated to the
sequence {vf}ien, by the construction in Subsection 3.4.1. Notice that in these
constructions, each sequence {vf}keN is solution to a particular wave equation

k k
DKivi = O,UZ- |aQ: 0

and in Section 3.3 this corresponds to different principal symbols p;, different sets
G, H;, & and different generalised bicharacteristic ;.
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From the definition of the measures, we obtain

VA€ A, (u,o(A) = lim (Av?, v%) 12,

—1 ) =1
k—o00

where v¥ is the extension by 0 across the boundary of 2. From Proposition 3.4.4
we have

Lemma 3.4.8. Each measure u; is supported on the characteristic manifold
Char(p;) = {(t,z,7,£) € T'"R x R? |; 7% = "¢ K;(2)&}

and 1s tnvariant along the generalised bicharacteristic flow associated to the symbol

pi =" EK(x)€ — 77

Lemma 3.4.9. The measures p; and p; are mutually singular in (0,7) X w, for

1 # 1.

Remark 3.4.10. We recall that two measures p and v are singular if there exists
a measurable set A such that pu(A) =0 and v(A°) = 0.

Proof. This follows easily from Lemma 3.4.8 and the assumption 2 in Theo-
rem 3.2.5, which implies that over w, the two characteristic manifolds Char(p;)
and Char(p;) are disjoint. O

Lemma 3.4.11. For A € A with the compact support in (0,T) X w, we obtain
that for i #1:
lim sup | (Av¥, vF) 2| = 0. (3.4.13)

k—o00

Proof. For Y(t,z) € (0,T) X w, we have that
Char(p;) N Char(p;) = {0},4 # L.

Then we choose a cut-off function 3; € C°°(T*R x R?) homogeneous of degree 0
for |(7,&)| > 1, with compact support in (0,7") x w such that

ﬂi’Char(pi) = 175’L’|Char(pl) = O, and 0 < 62 <1l

Since A € A with the compact support in (0,7) X w, for some ¢ € C5°((0,7T) X w),
we have that A = pAp. We choose ¢ € C5°((0,7") X w) such that @|supp(p) = 1 i.e,
¢ = . Now let us consider the (AvF, vF) 2. First, we have that
(A, v7) 12 = (A, 7)1
= (pApu}, our) 12
= ((1 - Op(B:))pApuy, gt )iz + (Op(B;) pAguy, gur) .
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For the first term ((1 — Op(3:))pApv?, gvF) L2, by the Cauchy-Schwarz inequality,
therefore we obtain that

[((1 = Op(B))pApul, @v)) 2| < ||(1 — Op(B;))pApv|| || Buf] |2

As we know that {vF} is bounded in L? (R; x R?), there exists a constant C' such
that

v |72 = (2uf, ¢v)) e < C.
From the definition of the measure y;, we obtain
Jim [[(1 = Op(B:)p A |[7. = lim ((1 - Op(6;))pApuy, (1 — Op(B:))pApuy) 2
= (i, (1 = 8:)*¢" o (A)*).

From Lemma 4.2.9, we have that supp (u;) C Char(p;). In addition, by the
choice of f;, we know that 1 — 3; = 0 on supp (g;), which implies that (u;, (1 —
Bi)%¢*|o(A)|?) = 0. Hence, we obtain

limsup [((1 — Op(8:))pApuy, guf) 2| = 0. (3.4.14)

k—o00

The other term (Op(B;)pApvy, gvi)e = (V¥ pA*OpP(B;)*Pur)re is dealt with
similarly by exchanging ¢ and [. [

Now let us come back to the proof of the weak observability inequality Equa-
tion (3.4.9). By the assumption Equation (3.4.11), We know that

T
/ / b1y vf + -+ + bk vk P dadt — 0,
0 w
for x € C§°(w x (0,7)), and we would like to obtain:

Z (xbskivF, xbikvl) — 0, as k — oo.
1<4,l<n

According to Lemma 3.4.11, we know that for i # [,

lim sup | (xb;ksvf, xbirop)| = 0. (3.4.15)

k—00

As a consequence, we know that

limsup ¥, (xb;ksvF, xbirvF) = 0. (3.4.16)

k—o0
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Using again the definition of the measure u;, we obtain the following;:

0 < {ps, (xbiki)*) = klim (xbik0F, xbikoF) < limsup 21 (xbkavk, xbikvk) = 0.
—00 k—so0
(3.4.17)
Thus, we know that
Mz‘|w><(o,T) = 0.
Since p; is invariant along the general bicharacteristics of pg, (by Lemma 3.4.8),

combining with GCC, we know that y; = 0. Since p; = 0, we have v — 0 strongly
in L2 ((0,T) x Q). Now we have to estimate ||0;v¥(0)||z-1. Let x € C°((0,T)).

loc

Multiply the equation
O KU1 = 0

by Tk, (x*v}) and then integrate on (0,7") x 2. We obtain that

T —
0= / / Og,of - T, (x20F) de dt
0 Ja

T T
= / / o (= A, T, (x20F) dz dt — / / Oyvy - Tre, (O (x2)vF) dz dt
0 Q 0 Q

T
- / Xty
0

T T
— et = [ Inandlf + [ [ o T @0+ A0 dedt
0 0 Ja
(3.4.18)
For the term fOT Jo vF - T, (2(x?)vf + 9,(x?)Of) da dt, we know that vf — 0
strongly in L2 ((0,T) x Q) and Tk, (02(x*)vf 4+ 9i(x?)Ow}) is bounded in L2
Thus, up to a subsequence, it tends to 0 as & — oco. Hence, we obtain that:

T
| 0B = 0,as b o
0

Soforall 0 <t; <ty <T,
to
/ || O (8)]|%, - dt — 0.
t1

So for almost every ¢ €]t1, ts], [|0,0 (¢)|[5,-1+]|vf (¢)|[32 — 0. Then by the backward
well-posedness, we can conclude:

[10:1 (0)|[7+ + vy (0)][72 — 0.

The same reasoning holds for vf, 2 < 7 < n. This gives a contradiction with
Equation (3.4.10), which proves the weak observability inequality Equation (3.4.9).
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Remark 3.4.12. Let us denote the energy E(v})(t) by E(vF)(t) = [0} (£)|[5-1 +
[0 ()]132. In fact, each v¥ satisfies a conservative system. Hence, we obtain

by the conservation law.

Step 2: Descriptions of the space E
Define

N(T) ={PV(0) € Ko : (bik1v1 + -+ + bpknvy)(t,x) =0, for t € (0,T),x € w}.
(3.4.19)

Lemma 3.4.13. E = N(T) where E was defined in Equation (3.4.6) and E has
a finite dimension.

Proof. According to the weak observability inequality Equation (3.4.9), for P*V(0) €
N(T), we obtain that

We know that N(T) is a closed subspace of K. By the compact embedding
Ko — K_1, we know that N(T) has a finite dimension. By definition, we know
that £ C N(T'). Hence, we obtain that F has a finite dimension. Then we want
to show that £ = N(T'). Define

0 -1 0
P 0
0 —1
0 0 —Ax 0
Thus, the solution (v, vy, -+ , vy, Oyv,)" can be written as
U1
8,5’01
L | = PV(0).
Un
(9,511”

Since N(T) is of finite dimension, it is complete for any norm. Setting & > 0
see Remark 3.4.14), we know that Equation (3.4.20) is still true for P*V(0) €
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N (T—96). Taking P*V(0) € A(T), for € €]0, 5[, we have e ““P*V (0) € A (T—9).
For a large enough, as € — 0T,

(a+ @%)‘%Uci — e \PV(0) = o (a + )PV (0),

as (o + «)'P*V(0) € D(«/). Hence, we know that {1(Id — e )P*V (0)}cso is
a Cauchy sequence in A (T — §), endowed with the norm ||(a+ &)~ " ||, . Since
all norms are equivalent, we obtain a Cauchy sequence {1(Id — e~ *”)P*V(0)}es0
in A (T —§), endowed with the norm || - ||x,, which yields &/P*V(0) € K;. As a
consequence, we obtain A (T') C D(«/) C K. Hence, we obtain that £ = A4 (T)
and has a finite dimension. One can see [21] for more details. O]

Remark 3.4.14. One has to take 6 small enough. Actually, if Ty is the constant

such that (w,Ty) satisfies GCC, and T > Ty, one is able to choose, for example,
5 = TETO ]

Step 3: Proof of the observability inequality Equation (3.4.8)

If Equation (3.4.8) was false, we could find a sequence {P*V*(0)}ren C Ko such
that

T
P VE(0) Ik, = 1, / [[b110f + -+ Dk |72, dt = 0. (3.4.21)
0

First, we know that {P*V*(0)*},cn is bounded in Ky = (L? x H~')". Hence,
there exists a subsequence (also denoted by P*V*(0)) weakly converging in Ko =
(L?* x H™')", to a limit which we denote with P*V/(0). We also know that
P*1(0) leads to a solution (vy,--- ,v,) of the system Equation (3.4.7) and sat-
isfies that bikivy + -+ + bykpv, = 0 in (0,7) x w. Thus, by the definition of
N (T) (see Equation (3.4.19)), we know that P*V(0) € A4 (T) = E, which implies
that P*V(0) = 0. Since the embedding Ky < K_; is compact, we obtain that
[P*V(0)¥[%_, = [[P*V(0)]|%_,- From the weak observability inequality Equa-
tion (3.4.9), we obtain:
1< CIPVO)E

which contradicts to the fact that P*V(0) = 0. Then observability inequality
Equation (3.4.8) follows. This concludes the proof of the P—exact controllability
of the system Equation (3.4.4).

3.4.3 The Proof of Theorem 3.2.5

According to the proof above, we only need to show that E+ = {0}, which is
equivalent to P* = Id. If we denote by V (¢) the solution of

OV + AV =0,V]ep = V(0),
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then, &V (0) = =9,V |;—o € A (T) provided that V(0) € 4 (T). This implies that
AN (T) C A(T). Since A (T) is a finite dimensional closed subspace of D(</),
and stable by the action of the operator .27, it contains an eigenfunction of <. To
be specific, there exists (e, es, -+ ,e,) € A (T) and A € C such that

0 0

0 -1 0 Z} z}
_A‘Kl 0 0 E1 . 1
0 -1 0 ]

0 0 —Ag, 0 o n

It is equivalent to the following system:

([ —el = X in Q,

—Ag, el = Xel in Q,

—el = Ae¥ in Q, (3:4.22)
—Ag, ) = dep in Q,

bmle? + -+ bnmneg =0, in w.

\
We can simplify this into

Ak, ed = N2 in Q,

Ax, ey = A%e) in Q,

Ak, e = 2% in Q,

bik1€? + -+ bprine? =0 in w,

Since the system satisfies the unique continuation of eigenfunctions, we know
that ) = --- = €2 = 0 in , which implies that £ = N(T) = {0}. Hence, from
Equation (3.4.8) with P* = Id, we obtain the observability inequality

T
C/ / |byryvy + - + bn/fnvn|2d$dt > ||V(0)||12c0
0 w

This concludes the proof of Theorem 3.2.5.

3.5 Unique continuation of eigenfunctions

3.5.1 A counterexample

First, we construct an example to show that the conditions in Theorem 3.2.1 are
not sufficient to ensure the unique continuation of eigenfunctions. Now, let us
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CHAPTER 3. SIMULTANEOUS CONTROL OF WAVE SYSTEMS

focus on the unique continuation problem in dimension 1. We consider a smooth
metric in dimension 1, g = c(x)dz?. Then we can define the Laplace-Beltrami
operator in the sense:

1 d d
A, = —————(1/det QR
g =0 o (Vdet(g)g™ —) o)
e dd
cedx? 2% dx

Fix the open interval (0,7) and the subinterval (a,b) C (0,7)(a > %). Now we
consider the unique continuation problem:

uf = —X\uy,
AQUQ = —>\2U2,
uy + ug = 0 in (a,b),
Uy, U € Hol((o,’/'f))

(3.5.2)

In general, the unique continuation of eigenfunctions does not hold.

Theorem 3.5.1. There exists a smooth Riemannian metric g = c(x)dx?, and two
etgenfunctions wy, uy of A, and % on (0,7) associated with eigenvalue 1 such
that uy +us =0, in (a,b) C (0,7) and uy; +ug #Z 0 in (0, 7).

Proof. Let x € C*(R) satisfying the following conditions:
L x(0) = x(m) = 0;
2.0<x<Kon (0,7) and x(§) = K > 1;
3. x(x) =1,Vz € (a,b);
4. x'(x) > 0 for z € [0, 7[, X'(z) < 0 for x €]b, 7] and x'(x) < 0 for z €]7, a|

Define us(z) = —x(x) sinz. Hence, we obtain uy(z) = —sinz on (a,b) and
uh(x) = —x'(z)sinz — x(z) cosz. Then we define ¢(x) by

(X'(z)sinx + x(z) cos x)?
3.5.3
K2 — y2sin’x ’ ( )

c(x) =

with a constant K > 1. It is easy to check that ¢ > 0. Since we want g to be a
Riemannian metric, we need ¢ > 0. Let us discuss in different cases,

L. if z €]0, 5[, we know that x'(x) > 0, x(z) > 0. Hence, we have x/'(z)sinz +
x(z) cosz > 0;
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3.5. UNIQUE CONTINUATION OF EIGENFUNCTIONS

2. ifz € [a,b], X'(z) =0, x(z) = 1, we obtain x'(z) sin z+x(z) cosx = cosz < 0
since a > 7;

3. if z €]b, w[, we know that x'(z) < 0, x(x) > 0. Hence, we have x'(x)sinx +
x(z)cosx < 0;

4. if x €]F, a[, we know that x'(x) <0, x(z) > 0. Hence, we have x/(z)sinz +
x(x)cosx < 0;

: T T T ”(%)
5.ifx=2,X(2)=0,c(3)=1-% > 1.

So we can conclude that ¢ > 0 and ¢ is a Riemannian metric.

We want to show that ¢ is C* near §. Let f(z) = (xX'(2)sinx + x(x) cosz)?

and g(x) = K? — x?sin® x, then we obtain c(x) = 5. We claim that there exist
f.5 € C and f(3) # 0, §(3) # 0 such that f(z) = (z — 5)2f(x) and g(x) =

(x — %)2g(x). We just use the Taylor expansion of x, X/, sin and cos:

X(@) = K + 5" (5)( = 57+ Ruf),
/ o ™ ™ 1 " T2
X(@) = x <§1><x - 3> + X" (G = 5+ Rala), 550
sin(r) = 1= 5(w = 5)2 + Ra(a),
cos(a) = —(a = 5) + Ra(a),

where lim, = (—%2 =0, for j = 1,2,3,4. Then we obtain:

z—3)

J@) = ('(5) = K + R = 5)%
™ ~ T (355)
9(2) = (~K('(5) = K) + R)(w = 5)*

éj = 0 for j = 1,2. Now if we choose a small neighbourhood of o

Here lim,_,
then f = xX"(%) —K)>+Ryand § = -K(xX"(3) — K) + R, satisfy the property. So
we know ¢ is C* and ¢ > 0, which means that ¢ is a smooth Riemannian metric.
In addition, ¢ < 1 in (a,b) and A, and A admit the same eigenfunction in this

interval (a,b). O

Ve

Remark 3.5.2. In fact, we can construct a counterexample in any dimension d >
1. For example, we define M = (0, 7) X l_I‘yi_1 where Hz_l 1s the torus of dimension

d—1. Then consider two metric g; = dx2+2j;é dy3 and g, = c(x) da:%—Z}té dy?

where c(x) da? is the metric we constructed in the dimension 1. Take the same
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wui(z) and ug(zx) in the proof of Theorem 3.5.1. Let V be the eigenfunction of

2 . . . . _
> o1 ;—yQ associated with eigenvalue o in IS Then
i

=Dy, (1 (2)V (y)) = (a+ Dy (2)V(y),

=g, (ua(2)V (y)) = (a + Dua(x)V(y),
uy (2)V (y) + ua(z)V(y) =0, in (a,b) x I,
uy (2)V (y), ua(x)V (y) € Hy(M).

But we know uy (x)V (y) + ua(x)V(y) £ 0 in M.
As we have seen, not every smooth metric can give us the unique continuation

of eigenfunctions. Here, we will give a positive result under a strong condition of
analyticity. In particular, let us consider the example of two equations:

(3.5.6)

Proposition 3.5.3. Gwen T > 0, suppose that:
1. (w,T,pk,) satisfies GCC, i = 1,2.
2. K1 > Ky in Q with analytic coefficients.

3. There exists a constant ¢ such that density functions k1, ko are analytic and
K1 = CRa.

4. ) has no infinite order of contact on the boundary.
Then the system Equation (3.5.6) is exactly controllable.

Proof. According to Theorem 3.2.1, we only need to show the unique continuation
of eigenfunctions of system Equation (3.5.6):

—AKlul = )\2u1 in Q,
—Ag,us = Nuy in Q, (3.5.7)
cuy + uy = 0 in w.

Since K7 and K, have analytic coefficients, we know u; and us are analytic func-
tions. Then cu;+us is also analytic. By unique continuation for analytic functions,
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cuy; + us = 0 in the whole domain €2. By the relations of two density functions
K1 = Cko, We have:

1
AKlul = —dz’v(m (x)K1Vu1)

K1(x)
= %;u)div(cmg(x)K1Vul) (3.5.8)
1 .
= mdw(@(m)[QVul).
Then
—cAgu; — Agyug = —@(x)div(/ig(x)f(qul) — ﬁ2<x)div(m2(x)K2Vu2)
= —mdw(mg(x)lQVul) + mdw(:‘iz(I)K2VU1)
- —HQEx)dZ"U(KZQ(ZE)(Kl — K3)Vuy).

On the other hand, we know —cAg,u; — Ag,uy = N(cuy + uy) = 0. Hence, we
have:

div(ke(z) (K7 — K3)Vuy) = 0.

Ko ()
We recall that —#@)div(ng(m)(Kl — K,)V+) is an elliptic operator. Hence, with
u1]aq = 0 on the boundary, we know that u; = 0. Hence, we deduce us = —cuy =0
in Q, which gives N (T") = 0. O

3.5.2 Constant Coefficient Case

In this section, we consider the simultaneous control problem for the system:
9}U — DAU = Bf1r)(t)1,(z) in (0,7) x Q, (3.5.9)

U1q b1

where U = |, B= : and D = diag(dy,- -+ ,d,). Then the system
Uy, b,

can be written as

( (8? — dlA)ul = b1f1(07T)(t)1w(£L’) in (O,T) X Q,

(0f — dyA)uy, = by f1o1)(t)1(2z) in (0,T) x Q,
u; =0 on (0,7) x 09,1 <j<n,
| (0, 7) = ud(z),  Ou;(0,2) = uj(x),1 < j<n.
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Recall that the Kalman rank condition for this case is rank[D|B] = n if and only
if all d; are distinct and b; # 0, 1 < j < n(See |6]). Without loss of generality, we
may assume that d; < dy < --- < d,. We want to prove the exact controllability
for this case(Theorem 3.2.8).

3.5.3 Proof of Theorem 3.2.8

By Theorem 3.2.1, we only need to prove the unique continuation properties for
eigenfunctions. Here we only state some facts without repeating the same trick as
before. Define

e/V(T) = {7/ S (LQXHil)n : (b1U1+b2U2+‘ : —|—bnvn)(x,t) = O,V(x,t) € (O,T)Xw}_

Then, A°(T') is a finite dimensional closed subspace of D(), and stable by
the action of the operator 7, it contains an eigenfunction of &7, where &/ =

< —BA —é_d ) Thus there exist 8 € Cand ¥5 = (V4, V) such that o/ ¥ = 875,

1.e.

~AVy = -3*D'V; (3.5.10)

If B#0, (=8%)*(=A)*V, = D%V} and (—A)*B'V; = (—82)*B'D~*V}. Since
V] solves the Laplace eigenvalue problem, we know that V; is analytic in 2 which
ensures that BV} = byv] + -+ + b,v} = 0 in the whole domain €. Thus

0= [BWVi[(—=B%) "1 (=A)BWA|--- [(=5%)"(=A)"B'Vi] = [D|B'D'""V; (3.5.11)

Since rank[D|B] = n, it is invertible. This gives that V; = 0.

If B = 0, we immediately obtian that V;, = 0 by the boundary condition.

Now we assume that the matrix (D, B) does not satisfy the Kalman rank
condition. Then we know that either there exist d; and d;, such that d; = d;,,
or there exists some b; = 0. We want to show the unique continuation property
fails in both cases. One can refer to [22]| for more details.

For the first case b; = 0, we know that
(0} — d;jA)u; = 0in (0,T) x €,
by the conservation of energy, the solution u; cannot be zero at any time if the

initial data is not zero.
For the second case, we consider the unique continuation property of the eigen-
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functions as follows:
(—diA¢r = N?¢; in Q,

_dj1A¢j1 = )‘2¢j1 in €2,
—dj, Ay, = Ny, in Q,

_dnA(bn:)\Q(bn in Q,
$;=0 ondQ,1<j<n,
L 011+ -+ b, =0 in w,

Since we have the relation d;, = d;,, we know that there exists a non-zero solution

(0,---,0,0, — qb 0,---,0), where ¢ is an eigenfunction for —d; A of eigenvalue
A2. Hence, we cannot obtaln the exact controllability in this case.

To conclude, we have obtained that the Kalman rank condition is a sufficient
and necessary condition for the exact controllabilty.

3.5.4 Two Generic Properties

If we define Ag, = A = % and n = 2, we have shown that not every smooth met-
ric can give us a unique continuation result in dimension 1 (see Subsection 3.5.1).
Then we want to prove a generic property for the metrics which can give the unique
continuation result in dimension 1. We introduce the following space of smooth
metrics to be sections of a bundle endowed with C'*°—topology

M={gelC®QTQT*Q) : g(z)(vy,v,) >0, for 0# v, € T,Q}.
Let Q = (0, ).

Proposition 3.5.4. In dimension 1, suppose that we fix the Laplacian A = de
in (0, 7) with its spectrum o(A). Then the set Gye = {g € M :0(Ay)No(A) =0}
is residual in M.

Proof. First, we notice that any connected one dimensional Riemannian manifold
is diffeomorphic either to R or to S'. We already know that o(A) = {kQ}keN. In
our setting, we have g = c(z)dx?. Then by change of Variables y = fox Ve(s)ds.

_dzd _ 1 d N
Then 4 dy = dyide = e dr Hence, we obtain aE = \/_da: \/— dm =A,. Deﬁne

L = [ \/c(s)ds. Hence, o(A,) = 0( ) (B }keN If o(A,) No(A) # 0, we
obtain that for some k and [, L = 2 € 7TQ, ie. [/ y/c(z)dx € Q. O

Corollary 3.5.5. Fiz A = dmg, for every metric g € Gy, the system FEqua-
tion (3.5.2) has a unique solution u; = us = 0.
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Proof. By the definition of G,., we know o(A,;) No(A) = (). Consider a solution
Uy, Uz of

uy +uz = 01in (a,b),
Uy, Ug € H&((O,’/T))

Now, assume that u; = 0. Then us = 0in (a,b). Hence, by the unique continuation
property for the eigenfunctions, we know that us = 0. This means that the system
has only trivial solution in this case. It is the same for us = 0.

Assume that u; # 0 then u; # 0 in (a, b)(otherwise u; = 0 everywhere by the
unique continuation property) and therefore uy # 0. Then w; and uy are both
eigenfunctions. Hence \* € o(A,) No(A) = 0, which is a contradiction. So for
every g € Gy, the system has only the trivial solution (0, 0). ]

From now on and until the end of the section, we restrict to the 2 dimensional
case d = 2. For any smooth metric g, we can define a Laplace-Beltrami operator

—A,.
Definition 3.5.6. Define the map:

E* H* ()N Hy(Q) x M — L?
by E(u, g) = (A, + a)u.

Remark 3.5.7. —A, is a Fredholm operator of index 0, and £ = E(-, g) is also
a Fredholm map of index O(see [51]). Here « is just a parameter. In the later
proof, we will let o take all possible values in the spectrum of the given Laplacian.

From now on, we fix one metric gy and the associted operator —A.

Lemma 3.5.8. For any \ fized and any element f € L*, X\ ¢ o(A,) if and
only if f is a regular value (i.e. the tangential map at this point is surjective) of
6';\ cH?2(Q)N HY(Q) — H L

Proof. Let £}u) = EMu,g) = f. At this point u, the tangential map DE) :
T.(H*(Q) N Hy(Q)) = H(Q) is given by DE)(v) = (Ag + A)v, since Ay + A is a
linear operator. A ¢ o(A,) is equivalent to that A, + X is bijective, which means
f is a regular value of €g>‘. m

Our proof mainly relies on the following theorem:

Theorem 3.5.9 (Transversality theorem). Let ¢ : H x B — E be a C* map,
H, B, and E Banach manifolds with H and E separable. If f is a reqular value
of ¢ and vy, = @(-,b) is a Fredholm map of index < k, then the set {b € B :
f is a regular value of ¢y} is residual in B.
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One can find a proof in [1].

Lemma 3.5.10. If \ € 0(A,,) is a reqular value of E*, then the set {g € M : X ¢
a(A,)} is residual in M.

Proof. Just apply Theorem 3.5.9, combining with Lemma 3.5.8. [

Now we have to check with the hypothesis, that is to verify that A € o(—Ay,)
is a regular value for £*. In the following, we will use D; to denote the differential
in the direction of H*(Q)NHj () and D, to denote the differential in the direction
of M.

Now let us check that the image of D,&” is dense in dimension 2. We will use
the conformal variations of the metric g. Here we choose r € C§°(12)

(Ag"rs’f’g - Ag)u

S

DyEMrg) = lim
s—0

1 1 1 g
=lim~ [ ————|(1 +sr)g|2(1 + s7) ' g"0;u — Ayu
<I(1 +s7)g|2 ) (35.12)

1/2-2 g 1
= hm — <T<1 + 8T>7281ng]aju + H——M’Agu — AQU)

Let us assume that v is orthogonal to DyE*(rg) for all r, then:

0= / vDoEN(rg)dp,
Q
= / v(=rAgu)du, (3.5.13)
Q
= / r(Au — X)vdp,.
Q
Since Equation (3.5.13) holds for any r € C§°(§2) we obtain that:
(A — A)v = 0. (3.5.14)
Now, we can check that \ is a regular value of £.

Lemma 3.5.11. In dimension 2, \ € 0(A,,) is a reqular value of E*.

Proof. Let (u,g) satisfy E*(u,g) = (A, + A)u = A, then at the point (u,g), we
have

DENw, ) = (Ay + A)v + Do),
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Now we need to verify the surjectivity of this map. If y € Im(A, + \)*, then y
is a weak solution of (A, + A)y = 0, and y is smooth. Let us assume that y is
orthogonal to D2E*(rg). Then according to Equation (3.5.14), we obtain that:

(Au— Ay =0.

First, we claim that u cannot be a constant. Assume that u is a constant function,
Agu = 0 and (Ay; + A)u = X gives that u = 1. But this does not satisfy the
boundary condition. Hence, u cannot be a constant. In particular, u Z 1. Now we
obtain that Au — A £ 0. If Au — X\ # 0 at xg, there exists a open neighbourhood N
such that A\u — A # 0 in V. Then y = 0 in N. Hence, we know that y vanishes in
a subdomain of 2. Then by the unique continuation property, we know y = 0 in
Q. This leads to the surjectivity of the map DE?*, which means that A € o(—A,,)
is a regular value of £ m

Now we can deduce that the set G* = {g € M : X & o(A,)} is residual in M.

Proposition 3.5.12. In dimension 2, suppose that we fix one metric gy and the
associated Laplacian A, with its spectrum o(Ay,). Then the set G, = {g € M :
o(Ag) No(Ay) =0} is residual in M.

Proof. Define:

Gue = Mrca(ag) G-

G is a intersection of countably many residual sets, so it is still residual in M. And
for any metric g € Gy, 0(Ay) No(A,) = 0. Assume that Ay € o(A,) Na(Ay,),
which gives that g ¢ G0, That contradicts to the fact that g € G,. = N AGU(A)G’\.
Hence, for fixed Laplacian A with its spectrum o(A,), the set {g € M : o(A,) N
a(Ay,) = 0} is residual in M. O

Corollary 3.5.13. In dimension 2, fix the canonical Laplace operator A, for every
metric g € Gy, the system

Aul = —>\2U1,
AQUQ = —/\QUQ,

Uy +uy =0 inw C €,
uy, us € H} (),

has only trivial solution u; = us = 0.

3.6 Constant Coefficient Case with Multiple Con-
trol Functions

In this section, we prove Theorem 3.2.10. First we study the information given
by the Kalman rank condition. Without loss of generality, we assume that the
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dy1d,,
diagonal matrix D has the form D = . , where ), ... n; =
d,Id,, o
n and d;(1 < i < s) are all distinct. And we can always rearrange the lines of the
system Equation (3.2.2) to ensure that this property is verified:

(83 — dlA)Ul = BIF]-(O,T)<t)]-w(x) in (O,T) X Q,

(07 — dsA)Us = BsF1(o7)(t)1,() in (0,T) x Q,
uj by o b,
for every 1 < ¢ < s, where U; = : and B; = o : is a
up bl b m
matrix of size n; X m.
Proposition 3.6.1. (D, B) satisfies the Kalman rank condition if and only if
rank(B;) = n; < m.

Remark 3.6.2. If m = 1, we know that rank(B;) = n; < 1. Thus, we obtain
n; = 1 and B; = b; # 0. This implies that every entry of control matrix B is
nonzero and all speeds d; are distinct. We recover the result of Remark 1.1 in [6].
If m > 2, we can allow some block d;1d,,, is of size n; X n;, with n; > 2. For

10
example, take D = diag(1,1,2) and B = | 0 1 |. Then we obtain [D|B] =
10
101010
01 01 0 1 |. Hence, we know that rank|[D|B] = 3 which means that
402010
the matriz [D|B] has full rank.

The proof of Proposition 3.6.1 is given in the Appendix.
Now we can prove Theorem 3.2.10.

Proof of Theorem 3.2.10. We follow the same procedure. Applying Hilbert unique-
ness method, we can estabish the observability inequality:

T
VOl a1y < C /O / BV |2dudt, (3.6.1)

where B* is the adjoint form of the matrix B, and V = (V;,--- , V) € R" x -+ x
R™ = R™. Then we can estabilsh a similar weak observability inequality:

T
VO sepyye < C /0 / BV Pdrdt + C|[V(O) Py op. (362)
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Then argue by contradiction. Suppose that the weak observability inequality is
false, then there exists a sequence (V*(0))ren such that

VO [Erexm-1ye = 1, (3.6.3)
T

/ /]B*V’“\dedt — 0, (3.6.4)
0 w

(CO [ — (365)

Hence, there are s microlocal defect measures (1;)5_; corresponding to V;.

T T s
/ /|B*vk\2da¢dt:/ /\ZB;m?czxdt. (3.6.6)
0 Juw 0 Jw =1

Since j; and pi; are singular from each other, for ¢ # j, we know by Cauchy-Schwarz

inequality,
s T
Z/ /|ijik]2da:dt—>0, (3.6.7)
i=1 70 Jw

which gives that B; B} 1i;]ux0,r) = 0. Since rank(B;B;}) = rank(B;) = n;, we know
B, B; is invertible. Hence we know ,Ui’wx(O,T) = 0. The rest of the proof is similar
to the single control case.

O

3.7 Appendix I: Proof of Proposition 3.6.1
Proof of Proposition 3.6.1. First, we calculate the form of [D|B]:

[D|B] =[D""'B|---|DB|B]
di'B, - B

d'B, .- B,

Now we define r; = rank(B;). Thus, for each i, we can find invertible matrices P;
Idn 0 def '

0 0 ) = F;. Then

define P = diag(Py,- -, Ps) and Q = diag(Q1,- - ,Qs). We know that P and @

are invertible. Hence, we obtain rank|[D|B] = rank(P[D|B]Q). Now we rewrite

of size n; X n; and @); of size m x m such that P,B;Q); =
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that
&PBQ, - PLBiQ,
PID|B|Q = : :
d?flPsBsQl <o PiByQy
di ' Ey o PIBiQ
dgilPsBsQl e Es

Now, consider the general term P;B;Q);:

P,B:Q; = P,B;Q:Q;'Q; = E:Q;'Q;.

Hence,
Ay~ By e E1QTQs
P[D|B]Q = : :
i EQT Q- E,
Now we define the column transform 77:
Idnl _d_llelQQ e _W{lele
Id,, .
Ty = 0 o _ 0
0 0 - Id,,
It is easy to see that T3 is invertible and rank(P[D|B]Q) = rank(P[D|B]QT}).
P[D|B]QTy
dy B, 0 e 0
m—1 n—1 n—1 n—1
B EBRQy' Q1 (B - - (Y - S B0,
J— 2 1
& B,Q7Qy e G =

Step by step, we can do the Gaussian elimination and find an invertible matrix T
such that:

di B, 0 0

* dn—l(i — By - 0

P[D|B]QT _ : 2 dz: dy . '
* * o M IS G - ) Es

Then rank[D|B] = rank(P[D|B]Q) = rank(P[D|B]Q) = > i ri < Y. n.
Hence, n = rank[D|B] =Y ;_,r; < >_:_n; = n. This implies that rank[D|B] =
n <= Vi, r; = n;. O
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3.8 Appendix II: Extension of Proposition 3.5.12

This section is based on the proof given by Romain Joly. The author would express
the sincere gratitude to him for his valuable advice and detailed suggestions. In
this section, we would like to remove the dimension restrictions in the Proposition
3.5.12.

Proposition 3.8.1. Suppose that we fix one metric gy and the associated Laplacian
A,y with its spectrum o(A,,). Then the set G, = {g € M : (A No(A,) =0}

1s residual in M.

Proof. As usual, we apply the Theorem 3.5.9. We identify the metric space G with
the space of all symmetric positive definite matrices. As we present in section
3.5.4, we define the map £* : H2(Q) N HE(Q)\{0} x M — L?. Now we only need
to check that 0 is a regular value for £*. In the following, we will use D; to denote
the differential in the direction of H*(Q2)N Hy () and D, to denote the differential
in the direction of M.

Now let us check that the image of D& is dense in dimension 2. We will use
the conformal variations of the metric g. Here we choose r € C§°(Q2)(similarly sa
we presented in section 3.5.4)

DyEMrg) = —drAyu + (d — 2)div(rVgu). (3.8.1)
Since we have Au = —Au, we obtain that D:E*(rg) = driu + (d — 2)div(rVau).

Let us assume that v is orthogonal to D2&E*(rg) for all r, then:
0= /QU.DQE)\(Tg)d/,Lg
_ /Q o(—driu + (d — 2)div(rV,u))dsg (3.8.2)
- _ /Q r(dAuv + (d —2)Vyv - Vu)dp,.

Therefore, we obtain that dAuv + (d —2)V, v - Vu = 0. Since u # 0, we obtain
that the normal derivative of u cannot be identically 0 on the entire boundary.
Suppose that at zq € 0L, V,u|a(xg) # 0. Let a(t) be the integral curve for the
field V u passing through zy. Then the equation becomes the ODE(d>2):

d u(a(t))v(a(t)) + (d — 2)%}5@))) =0.

Combining with the Dirichlet boundary condition for v, we obatin that v = 0,
which implies that 0 is a regular value of £*. n
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Chapter 4

Controllability of a coupled wave
system with a single control and
different speeds

4.1 Introduction and Main Results

4.1.1 General setting

Let © C R% d € N*, be a bounded and smooth domain. We use A to denote the
canonical Laplace operator on €2, and Ap to denote the Laplace operator with
domain H2(Q)NHL(Q). Let O = 82 —d1 A and Uy = 97 — dyA be two d’Alembert
operators with different constant speeds d; # ds. Let ny, ny be two integers and
n = ni + ny. We assume that w is a nonempty open subset of €2 and that 7" > 0
is a final time horizon. In this article, we aim to deal with some controllability
properties of the following type of coupled wave systems:

D1U1—|—A1U2 =0 in (O,T) X Q,
Uy + AUs =bf1, in (0,7) x €,
Uy =U, =0 on (0,7) x 09, (4.1.1)
(U1, Ua)li=0 = (UY,U9) inQ,
(0,Ur,0.U3)|i=0 = (U},U3) in Q.
)
For j = 1,2, we use U; = : to denote the solutions corresponding to the

speed d;. f € L*((0,T) x w) is the control function, which is a scalar control and
acts on (0,7) X w. A; € My, »,(R) and Ay € M,,(R) are two given coupling

matrices and b € R"2. Note that System (4.1.1) is a particular case of systems of
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the form R
(02 — DA)U + AU =0bf1, in (0,7) x Q,
U =0 n (0,7) x 09, (4.1.2)
(U, 0:U)]i=0 = (U°%UY) inQ,

with here

_( dyId,, 0 (0 A . (0
D_( ' dzfdm)m““—(o Az)m,andb_(b)m, (4.13)

where n = ny;+ns. Let us emphasize the following important and crucial properties
of System (4.1.1): all coefficients are constant, the coupling is in a block-cascade
structure (notably, the control f is only acting directly on Us,, which itself acts
on U; through the matrix A;), and we restrict to the case of a scalar control (i.e.
f € L*((0,T),R™) with m = 1). We will explain in conclusion the difficulties to
treat more general cases.

4.1.2 Geometric assumptions

For our concerned domain €2, we assume that 2 has no infinite order of tangen-
tial contact with the boundary. This assumption will be made more precise in
Subsection 4.2.3. In fact, this assumption is sufficient to ensure the existence and
uniqueness of the general bicharateristics passing through a given point in the
phase space. Furthermore, for the control set w, we assume the Geometric Control
Condition (GCC).

Definition 4.1.1. For w C Q and T > 0, we shall say that the triple (w,T,p)
satisfies GCC' if every generalized bicharacteristic of p meets w in a time t < T,
where p is the principal symbol of L.

We shall give a precise definition of the generalized bicharacteristics in Subsec-
tion 4.2.3. In the case of an internal control, GCC was firstly raised in [45] as a
necessary condition for the controllability of the scalar wave equation from w, and
was proved to be sufficient in [8]. The case of a boundary control was studied in
10, 14].

4.1.3 Kalman conditions

In this part, we recall some Kalman rank conditions introduced in the literature
of coupled parabolic systems and the link between them. First of all, we recall the
usual Kalman rank condition for the controllability of linear autonomous ordinary
differential equations (see e.g. [27]).
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Definition 4.1.2 (Usual algebraic Kalman rank condition). Let m,n be two pos-
itive integers. Assume X € M,(R) andY € M,, ,(R). We introduce the Kalman
matriz associated with X andY given by [X|Y] = [X" Y|+ | XY[Y] € M, um(R).
We say that (X,Y') satisfies the Kalman rank condition if [X|Y] has full rank.

In order to generalize this usual algebraic Kalman rank condition, we introduce
the Kalman operator (see [6]).

Definition 4.1.3 (Kalman operator). Assume that X € M, (R) andY € M, (R).
Moreover, let D € M, (R) be a diagonal matriz. Then, the Kalman operator as-
sociated with (—DAp + X,Y) is the matriz operator # = [-DAp + X|Y] :
D(X) C (LA™ — (L*)™), where the domain of the Kalman operator is given by
D(x) ={u e (L2(Q)"™: Hue (L*(Q))"}.

Definition 4.1.4 (Operator Kalman rank condition). We say that the Kalman
operator & satisfies the operator Kalman rank condition if Ker(2™*) = {0}.

The operator Kalman rank condition can be reformulated as follows.

Proposition 4.1.5. [6, Proposition 2.2/ The operator Kalman rank condition
Ker(2*) = {0} is equivalent to the following spectral Kalman rank condition:

rank[(AD + X)|Y] =n,V\ € o(—Ap).

In particular, let C > 0 be a constant and D = Cld,. Then, the operator Kalman
rank condition is equivalent to the usual algebraic Kalman rank conditionon (X,Y)
given in Definition 4.1.2 (see [6, Remark 1.2]).

In the following proposition, we give an equivalent statement of the operator
Kalman rank condition associated with System (4.1.1), which is very specific to
our particular coupling structure and the fact that we have a single control.

Proposition 4.1.6. We use the same notations (D, A, b) as in (4.1.3). We denote
by K = [-DAp + Alb] the Kalman operator associated with the System (4.1.2).
Then, Ker(K*) = {0} is equivalent to satisfying all the following conditions:

1. ny = 1,’
2. (Ag,b) satisfies the usual Kalman rank condition (See Definition 4.1.2);
3. Assume that Ay = a = (v, -+ ,ap,). Then, YA € o(—Ap), a satisfies

no—2 no
o <Z (di — do)* ¥ ) a; AT 4 (dy - dg)m—lw—lmm) b#0,
k=0 j=k+1
(4.1.4)
where (a;)o<j<n, are the coefficients of the characteristic polynomial x(X)
of the matriz Ay, i.e. x(X) = X"+ Z;Ligl a; X7, with the convention that
(p, = 1.
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We shall give the proof in Appendix 4.6.
Since we consider the control problem in a domain €2 with boundary, it is
natural for us to introduce the following Hilbert spaces H&(Ap).

Definition 4.1.7. We denote by (ﬁf)jeN* the non-decreasing sequence of (positive)
eigenvalues of —Ap, repeated with multiplicity, and (e;)jen+ an orthonormal basis
of L*(Q) made of eigenfunctions associated with (57)jens:
—Ae; = ,szej, ej(z) = 0,0 € 09, |lej]|r2) = 1.

For any s € R, we denote by HE(Ap) the Hilbert space defined by

Hy(Ap) ={u= > aje;; Yy B%aj* < oo}.

JEN* JEN*
For convenience, we also denote

LF = (H3(Ap))" for any s € R, and k € N. (4.1.5)

First, we give a necessary condition for the controllability of System (4.1.1).

Proposition 4.1.8. We denote by K = [~-DAp + A|b] the Kalman operator as-
sociated with the System (4.1.2). If KC does not satisfy the operator Kalman rank
condition, then System (4.1.1) is not null-controllable, in the following sense: there
exists a quadruple

o0
(U, U3, U, Uy) € () (L0 x £ y)
s=1

such that for any control f € L?(w), we necessarily have

We shall give the proof later in the Subsection 4.2.1.

From now on, we always assume that C = [-DAp +A|l;] satisfies the operator
Kalman rank condition, so that we notably have n; = 1. Before we give a precise
definition of the exact controllability property of System (4.1.1), we first investigate
a simpler system. For a fixed 1 < s < ny, we consider the following system

( Oy + 30 asuj =0 in (0,7) x Q,
Ohu? + ul =0 in (0,7) x Q,
Oou?,_y + u2, =0 in (0,7) x Q,
DQ’U/EQ — 2221 CLn2+1,J‘U? = flw n (O,T) X Q,
ug =0 n (0,7) x 09,
u? =0 on (0,7) x 00,1 < j < ny,
(ui U%, o 7u$l,2)|t:0 - (ui’(]? U’%OJ U 7u%20> in Q?
\ (atu%7 atu%a e 7atu3z2>|t=0 = (U}’l, u%la e 7u%21> in Q.

(4.1.6)
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Here we have, A1 = (aq, -+ ,as,0,--+,0) and
0 1 0 0 0
Ay = 0 0 h 0 , and b =
. 1
_an DY —a2 _a/1 1

The control is f € L*((0,T) x w). For this simpler system (4.1.6), taking zero
initial conditions (that belong to any linear subspace and hence to any potential
state space) together with a forcing term f in the space L?((0,T) x w), which kind
of target spaces will the solutions of System (4.1.6) arrive in? That is the first
question we need to answer in order to be able to obtain an exact controllability
result in an appropriate state space. Under this particular structure of coupling,
we introduce appropriate compatibility conditions for System (4.1.6). For r =0, 1,
and (u, vy, -+, Vp,) € HE ST (Ap) x HY 7 (Ap) x - - - x HE(Ap), let us define

a special function U, by

Ur (( d A)nz s+1

comp
no—s s na—s—k
- Z Z Z ai( k)(—dlA)k(—dzﬁ)”Ts—k_lij

k=0 j=1 =0

s m2—2stjns—s—k

N J n2— a]del Ng —§ — k (—d A)nQ_S_k_lU'
E E E dl dg 1 I \k+l I 2 J+k+l | -
= k=0

(4.1.7)

Using this special function U, let us denote by H; the following space:

comp?

He = {(u, 01, ,vny) € HEP ST (Ap) x HP ' (Ap) x --- x H5(Ap)
s.t. Uy € Ho(Ap)}

(4.1.8)

Definition 4.1.9 (State space). The state space for System (4.4.1) is defined by

Hi x Hy.
The two conditions
Uclomp(ul(]?ufoﬂ Ty nz) S HQ(A )
U(?omp( o uflﬁ'” ) nz) S HQ(A )

are called the compatibility conditions for the controllability of System (4.4.1).
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Remark 4.1.10. If s = no, the compatibility conditions reduce to

—dlAU%O € Hflz(AD),
—dlAU}J c Hg(AD),

which is an empty condition since we already know that (uj,ui) € H3(Ap) X

HE(Ap).

Remark 4.1.11. As we will see later on, the solutions of System (4.1.6) will
stay in Hi X Hg if the initial states are in this space. Because of the linearity
and the time reversibility of the system, exact controllability is equivalent to null
controllability or reachability from 0 for System (4.1.6). Since the equilibrium 0 is
of course in the spaces Hi x H{, this is the appropriate state space.

Remark 4.1.12. Since we consider a system with a cascade coupling structure, it
is natural that there is a gain of reqularity for the uncontrolled states uj2 2<5<
ne) (this phenomena has already been observed notably in [20, Theorem 1.4]). We
shall explain the gain of two derivatives of reqularity for the state u} in Subsec-
tion 4.2.2. We could call it “additional regularity”.

Now, we give the definition of the exact controllability of System (4.1.1).

Definition 4.1.13. We say that System (4.1.1) is exactly controllable in time
T > 0 if there exists 1 < s < ny and T € GL,(R) such that for any initial data
(U, Uy) € T HHS) x T HHS) and any target (U, Uy) € T HH;) x T HHY),
there erists a control function f € L*((0,T) X w) such that the solution U of
(4.1.1) satisfies (U, 0,U)|1—0 = (U, U1) and (U, 0,U)|=r = (Us, U1), and T(U) is
a solution of the associated System (4.1.6) with an appropriate control f

Remark 4.1.14. By the definition above, in order to prove the controllability of
System (4.1.1), we first look for an invertible transform to change the system into
the simpler but equivalent System (4.1.6). Then, we prove the result for the simpler
System (4.1.6) to conclude the exact controllability of the general System (4.1.1).

Remark 4.1.15.
We shall see later that the transform T is just

10

0 P)’
where P € GL,,(R) is the transform associated with the Brunovsky normal form
defined in Theorem 4.3.1. Here we can give an example of the transform T under
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a simple setting. If we consider a particular case of System (4.1.1) given by

( Oyt — 2u? + ul =0 in (0,T) x Q
Couf + 3uf —su3  =2f1, in (0,T) x
Ooud + ui — Su3  =4f1, in (0,T) x €,
ul = on (0,T) x 99
uj =0 on (0,T) x 0, j = 1,2,
(U%, u%a U’%) |t:0 = (ui(l)’ Ué ?7 ug(l)) in Q7

\ (atu%v atu% atu%)|t:0 = (u1’ UL Uy ) in Q?

we have that

0 -2 1 0
- 0 A . 3 1 I _ 0 _
0 5 -3 4
‘ 3 ‘ -2 1
According to the Brunovsky normal form, we obtain Ty = ( 3 1 ) such that
2 2
1 2 1
Ta(Ash. ) = Ty 0.
0 1
1 0 0
Then the transform is given by T = 0 -2 1 . And more-
0% 0 & _1
2 2
over, this transform T satisfies
) 0 010
To=|( 0|, and TAT *=| 0 0 1
1 000

There is a large literature on the controllability and observability of the wave
equations. This paper is mainly devoted to multi-speed coupled wave systems. We
list some of the existing results and references:

e For a single wave equation posed on a smooth bounded domain of R? and
with an internal control, one can use microlocal analysis to prove the ob-
servability inequality as done by Bardos, Lebeau and Rauch in [8]. We have
two approaches to define the microlocal defect measures. We can introduce
the microlocal defect measures based on the article by Gérard and Leicht-
nam [24] for Helmoltz equation and Burq [13] for the wave equation, using
the extension by 0 across the boundary. On the other hand, we can also use
the Melrose cotangent compressed bundle to construct the measure, based
on the article by Lebeau [31] and Burg-Lebeau [15] in the setting of systems.
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e Although we now have a better picture on the controllability of a single wave
equation, the controllability of systems of wave equations is still not totally
understood. To our knowledge, most of the references concern the case of sys-
tems with the same principal symbol [J on each equation of the system, which
will be discussed in the present paragraph. Notably, Alabau-Boussouira and
Léautaud [5] studied the indirect controllability of two coupled wave equa-
tions, in which their controllability result was established using a multi-level
energy method introduced in [2|, and also used in [3, 4]. Liard and Lissy
[37] studied the observability and controllability for coupled wave systems
with constant coefficients under Kalman type rank conditions. In the case of
space-varying coefficients, Cui, Laurent, and Wang [19] studied the observ-
ability of wave equations coupled by space-varying first or zero order terms,
on a compact manifold. Their results are extended to the case of manifold
with boundaries in [18].

e Concerning the multi-speed case, Dehman, Le Roussau, and Léautaud con-
sidered two coupled wave equations on a compact manifold in [20]. Lissy and
Zuazua [40] proved some general weak observability estimates for wave sys-
tems with constant or time-dependant coupling terms. Niu [44] investigated
the case of the simultaneous controllability of wave systems, with different
speeds and coupling terms involving only the controls, under various condi-
tions on the speeds. Notably, in the case of constant speeds, a necessary and
sufficient condition involving a Kalman rank condition was obtained, in the
same spirit as in the present article.

e Concerning the boundary controllability of the coupled wave systems, we
would like to refer to the works by Tatsien Li and Bopeng Rao, especially
their work on the synchronisation of waves. In [32] and [33], Li and Rao for
the first time studied the synchronization for systems described by PDEs.
Taking a coupled system of wave equations with Dirichlet boundary controls
as an example, they proposed the concept of exact boundary synchronization
by boundary controls. After that, they and their collaborators successively
got quite a lot of results (for instance, see 34, 36]). In particular, in [35], the
authors obtain necessary conditions, presented as a criteria of Kalman’s type,
to the approximate null controllability, the approximate synchronization,
respectively, for a coupled system of wave equations with Dirichlet boundary
controls, which also show the link between the controllability of coupled wave
systems and some appropriate Kalman conditions.

4.1.4 Main result

Our main result is the following one.
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Theorem 4.1.16. Given T > 0, suppose that:
(1) (w,T,pq,) satisfies GCC, where py, is the principal symbol of O;,i = 1, 2.
(ii) 2 has no infinite order of tangential contact with the boundary.

(iii) The Kalman operator K = [~DAp + Alb] associated with System (4.1.1)
satisfies the operator Kalman rank condition, i.e. Ker(K*) = {0}.

Then System (4.1.1) is exactly controllable in the sense of Definition 4.1.13.

Remark 4.1.17. o We will explain the concept of order of contact in the next
section.

o Assume that conditions (i) and (ii) are verified. Then, condition (iii) is
also necessary to have exact controllability in the sense of Definition 4.1.13.
Indeed, if (iii) is not verified, Proposition 4.1.8 provides a smooth initial
condition (that is notably in the state space introduced in Definition 4.1.13)
that is not null-controllable.

e In fact, our proof also provides a controllability result for systems of wave
equations with a single speed, of the form

DQUQ + A2U2 = bflw m (O,T) X Q,

Us =0 on (0,T) x 09,
Usli=o = (UY,U9) inQ, (4.1.9)
01Us|i=0 = (UL U}) in Q.

If (A2, b) does not verify the usual Kalman rank condition given in Definition
4.1.2, then this system is not exactly controllable in the same sense as in
Proposition 4.1.8, with the same proof. If (As,b) verifies the usual Kalman
rank condition, the state state space is

PY(HT) x P (Hy),

where P is the transform associated with the Brunovsky normal form defined
in Theorem 4.3.1 and H (r =1,2) is given by

?:[i = {(Ula o )UHQ) S ng_l—i—T(AD) Xree X Ha(AD)}

Then, System (4.1.9) is exactly controllable under this Kalman rank con-
dition. This 1s a very particular case of the more general result proved in
[18], where space-varying coefficients, multi-dimensional controls and also
one-order coupling terms are considered.
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4.1.5 Outline of the chapter

The outline of this chapter is the following.

Section 4.2 is devoted to introducing some preliminaries. In Subsection 4.2.1,
we present the necessity of the operator Kalman rank condition by giving the proof
of Proposition 4.1.8. Then Subsection 4.2.2 is devoted to the “additional regularity”
property for coupled wave equations. Subsection 4.2.3 includes the description of
the boundary points, and give the precise definition of general bicharacteristics and
the order of tangential contact with the boundary. Subsection 4.2.4 introduces the
microlocal defect measures, which is the basic tool for our proof.

In Section 4.3, we focus on the special case ny = 2 to show the whole procedure
of the proof of the controllability of the coupled wave system. Subsection 4.3.1
is devoted to reformulating the system with the help of the Brunovsky normal
form. Then in Subsection 4.3.2 we introduce the simpler system with one of the
parameters being 0. We demonstrate the proof under this simple setting. In the
following Subsection 4.3.3, we present the result of the general systems in a way
very similar to the simpler case.

In Section 4.4, we plan to deal with any number of equations. Subsection 4.4.1
provides the corresponding simpler system in analogue with the Subsection 4.3.2
and gives the clear meaning of the compatibility conditions under the general
setting. Then, with the help of the compatibility conditions, we are able to present
the proof of the controllability result of Theorem 4.4.8. In the Subsection 4.4.2,
we give the reformulation procedure of the general system.

In the concluding Section 4.5, we give some open problems related to our work,
and explanations on the difficulties to solve them.

4.2 Preliminaries

We divide this section into four parts. The first part is devoted to proving the ne-
cessity of the operator Kalman rank condition. Then, we consider the regularities
of the solutions of two coupled wave equations with different speeds. The third
part aims to introduce the geometric preliminaries including the conceptions of
general bicharacteristics and order of contact. The final part mainly contains the
definition and some properties of the microlocal defect measures.

4.2.1 On the necessity of the operator Kalman rank condi-
tion

In this section, we are going to give the proof of Proposition 4.1.8. At first, we
introduce the following proposition for the ordinary differential systems of second
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order.

Proposition 4.2.1. If (A,b) does not satisfy the usual algebraic Kalman rank
condition (see Definition 4.1.2), for any nonzero initial data (y°,y*) # (0,0), the
ordinary differential system

&y — A '
i = A%y in (0,7, 421
{ (y7 %)'t:o - (y07y1)7 ( )

has a nonzero solution satisfying b*y(t) = 0 for every t € (0,T).

Proof. Define z = ( fy ) Then, we are able to rewrite System (4.2.1) into a
first-order system:

{ dz :éi*z in (0,7) (4.2.2)

where A = 04 . Let b= b . Easy computations give that
Id, 0 2nx2n 0 2nx1

~ k . k+1
A%:<% jk)and/l%ﬂz(jk AO )fork:(),l,---.

Therefore, we obtain
B N N U R
A = G120 = (o, 0T )0

As a consequence, we know that rank[A|b] = 2rank[A|b]. Since (A,b) does not
satisfy the usual algebraic Kalman rank condition, i.e., rank[A[b] < n, we deduce
that rank[A|b] < 2n, which implies that (A, b) does not satisfy the usual algebraic
Kalman rank condition. By duality, this means that (4.2.2) is not observable
through b.

Thus, there exists a nonzero solution ((t) = ( 21 Eg ) € R?" to the associated

2

adjoint system % = A*z satisfying that b*C(t) = 0 for every t € (0,T). Then,
setting y(t) = (1(t), we derive a nonzero solution y(t) of System (4.2.1) satisfying
that b*y(t) = b*¢i(t) = b*((t) = 0 for every t € (0,7). O

Now, we go back to the proof of Proposition 4.1.8.

Proof of Proposition 4.1.8. According to Proposition 4.1.5, since K = [-DAp +
Alb] does not satisfy the operator Kalman rank condition, there exists Ay €
o(—Ap) such that rank[(AD — A)|b] < n. As a consequence of Proposition 4.2.1,
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there exists a nonzero solution x,,(t) € R™ to the following ordinary differential
system:

{ X =(ND—A)x i (0,7),
(Xa %)ltzo = (X(]?Xl) 7& (070)7

satisfying b*x»,(t) = 0 for every ¢t € (0,T). Then, let ®(t,z) = xx,(t)or (2),
where ¢, is an eigenfunction of —Ap associated with \g. Therefore, ® satisfies
the following system:

(02— DA+ A9 =0 in Q,
b*d =0 for every t € (0,T)

A 4.2.3
q)’BQ = 07 ( )
(@, 0:®)|1=0 = (X%ro X 0o)  In Q.

Suppose that there exists f € L?((0,T) x w) such that the corresponding solution
U to (4.1.2) with initial state (Up, U, ) satisfies

(U, 8tU>|t:T — (0,0) (424)
Then, by (4.1.2), we have
(87 = DAD + AU, ®) 2omyxe) = (0L ) 12(0.1)x00)-

Integrating by parts on the left-hand side and using (4.2.3) together with (4.2.4)
leads to

(U°, x oro)r2) — (U, —=x"0x0 ) 12(0) = (bf1l., Q) r2((0,1)%0)-
Since b*® = 0 for every ¢ € (0,T), we obtain that
(U°, X" oxo)1200) — (U, X% ) 12(0) = 0.
Choosing (Up, U1) = (X' ¢re —X ¢, ) leads to (|x** + |x°[*) ||g0>\0||%2(9) = 0, which

is a contradiction with (x°, x!) # 0. O

4.2.2 On the regularity of coupled wave equations

Before investigating more complicated situations, let us concentrate on the regu-
larity properties of the following simple system:

Dlul + Uo =0 n (O,T) X Q,

Uy = f in (O,T) X Q,

U = O’ Usy =0 n (O,T) X 89, (425)
(u1, Qpur, ug, Opug)|i=o = (uf, uy, ug,up) in Q.
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Our next result gives a property of regularity for the solution of System (4.2.5).
Such kind of extra regularity result was also observed in [20, Theorem 1.4], in which
the authors stated the corresponding result in the case of a compact manifold
without boundary. Here we will present a different (and more elementary) proof.

Lemma 4.2.2. Assume that the initial conditions satisfy
(u?,u},ug,ué) S H6+3(AD) X H5+2(AD) X HS+I(AD) X Hg(AD) (426)
Then, there exists a unique solution to System (4.2.5) satisfying
up € Cl([oa T]? H€2+2(AD)) N OO([O> T]? HSJF?)(AD))?
us € CH([0, T, HG(Ap)) N CO([0, 7], H5™ (Ap)).

Proof. Since uy satisfies a wave equation with a source term f € L'((0,7T), H3(Ap)),
it is classical that there exists a unique solution

up € CH([0, T, H5(Ap)) N CY([0, T, HG" (Ap))
to the second line of System (4.2.5). Now, let us consider the first equation

Dlul = —U2 (428)

(4.2.7)

as a wave equation with a source term uy € L*((0,T), H3 (Ap)). Thus, we know
that there exists a unique solution u; € CY([0, T, HS™ (Ap))NCO([0,T], HG(Ap)).
Now, we need to state an extra regularity property for u;. Applying the d’Alembert
operator [y on both sides of (4.2.8), we obtain that

Dngul = _|:|2u2.

Since Oous = f, we know that O;(0ou;) = —f. We decompose Oauy into two
parts Oouy = Chuy + (di — d2)Apuy. Hence, we obtain that
|:|2u1 = —U9 + (d1 — dg)AD’ul. (429)

Now, by using (4.2.6), we remark that the initial condition for Cyu; verifies:

Do |=0 = —uali=o + (di — da)Apusli=o
= —ub + (dy — do)Apu® € HG™ (Ap),
9 (Oaur) =0 = —0ruz|i=o + (d1 — d2) Apdsus|i=o
= —ud + (dy — dy)Apul € HS(Ap).
So, we know that (yu; € C([0,T], HG(Ap)) NC([0,T), HG™ (Ap)). In addition,
we also know that —yu; = uy € CY[0,T], H(Ap)) N CO([0,T], HGT (Ap)).
Hence, we obtain that
1
di — da
We conclude that u; € C*([0, T], H5™(Ap)) N C°([0, T), HG*(Ap)). O

Apuy = (Oy — Oh)uy € CH[0,T), HG(Ap)) N C°([0,T], HS™ (Ap)).
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4.2.3 Generalized bicharacteristics

This part has many repeated contents as we have already presented in
Section 2.3 of Chapter 1.

As usual, for a variable y, we denote D, = id,. Let B = {y € R? : |y| < 1} be
the unit euclidean ball in R?. In a tubular neighbourhood of the boundary, we
can identify M = R x Q locally as X = (0,1) x B and M = R x 9 locally
as {0} x B. Now, we consider R = R(x,y, D,) which is a second order scalar,
self-adjoint, classical, tangential and smooth pseudo-differential operator, defined
in a neighbourhood of [0,1) x B with a real principal symbol r(z,y,n), such that

g—; # 0 for (x,y) € [0,1) x B and n # 0. (4.2.10)

Let Qo(x,y,D,), Qi(z,y,D,) be smooth classical tangential pseudo-differential
operators defined in a neighbourhood of [0, 1) X B, of order 0 and 1, and principal
symbols qo(z,y,7n), ¢1(x,y,n), respectively. Denote P = (0% + R)Id + Qu0, + Q1.
The principal symbol of P is

p=—+r(xyn). (4.2.11)

We use the usual notations T'M and T*M to denote the tangent bundle and
cotangent bundle corresponding to M, with the canonical projection 7

m:TM(or T"M) — M.

Denote 79(y,n) = r(0,y,m). Then, we can decompose T*0M into the disjoint
union £ UG U H, where

&= {7“0 < 0}, g = {T‘O = O}, H = {7”0 > 0} (4212)

The sets £, G, H are called elliptic, glancing, and hyperbolic set, respectively.
Define

Char(P) = {(x,y,&,n) € T*R™ |57 : €2 = r(z,9,1)} (4.2.13)

to be the characteristic manifold of P. For more details, one can refer to [15] and
[44]. Notice that in [13], one can see another characterization for these sets &, G,
and H.

To describe the different phenomena when a bicharacteristic approaches the
boundary, we need a more accurate decomposition of the glancing set G. Let
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11 = 0y7|z=0. Then, we can define the decomposition G = U;; G7, with

G* ={(y,n) : roy,n) = 0,71(y,n) # 0},
G* ={(y,n) : roly,n) = 0,71 (y,n) = 0, Hy,(r1) # 0},

GH3 = {(y,m) : roly,m) = 0, H. (r1) = 0,5 < k, H*' (1) # 0},

G ={(y,n) : roy,n) = 0, H} (r1) = 0,Vj}.

Here HZO is just the Hamiltonian vector field H,, associated to ry composed j times.
Moreover, for G2, we can define G>* = {(y,n) : ro(y,n) = 0,£r(y,n) > 0}. Thus
G? = G>TUG>™. For p € G>T, we say that p is a gliding point and for p € G, we
say that p is a diffractive point. For p € G7, j > 2, we say that a bicharacteristic
of p tangentially contacts the boundary {z = 0} x B with order j at the point p.

We have the definition of the generalized bicharacteristics (See [26, Section
24.3| for more details):

Definition 4.2.3. A generalized bicharacteristic of p is a map:
seI\Dw~~(s) e T"M UG,

where I 1s an interval on R and D is a discrete subset I, such that po~vy =0 and
the following properties hold:

1. ~(s) is differentiable and & = Hy(v(s)) if v(s) € T*M\T*OM or ~(s) €
g2,+'

2. Bvery s € D is isolated ,i.e., there exists € > 0 such that v(s) € T*M\T*OM
if 0 < |s —t| <, and the limits v(s*) are different points in the same fiber
of T*OM .

3. v(s) is differentiable and i—z = H_,,(v(s)) if v(s) € G\G>™.

Remark 4.2.4. We denote the Melrose cotangent compressed bundle by ST*M and
the associated canonical map by j : T*M — *T*M. j is defined by

iy, §m) = (x,y,28,n). (4.2.14)

Under this map j, one can see y(s) as a continuous flow on the compressed cotan-
gent bundle *T* M. This is the so-called Melrose-Sjistrand flow (see [15] for more
details).
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From now on we always assume that there is no infinite tangential contact
between the bicharacteristic of p and the boundary. This is in the meaning of the
following definition:

Definition 4.2.5. We say that there is no infinite contact between the bicharac-
teristics of p and the boundary if there exists N € N such that the gliding set G

satisfies
N
G=Jg'
j=2

It is well-known that under this hypothesis, there exists a unique generalized
bicharacteristic passing through any point. This means that the Melrose-Sjostrand
flow is globally well-defined. One can refer to [42] and [43] for the proof.

4.2.4 Microlocal defect measure

In this section, we will give two approaches to construct the microlocal defect
measures. The first one is based on the article by Gérard and Leichtnam [24] for
Helmoltz equation and Burq [13] for wave equations. The other one follows the
idea in the article [31] by Lebeau and we rely on the article [15] by Burq and
Lebeau for the setting of wave systems. In the first approach, we can compare
two different measures, especially the supports of two different measures. In the
later proof, it is crucial to distinguish the measures with different speeds based on
this idea. On the other hand, we use the second approach to describe the way the
polarization of one measure is turning.
Let (u*)ren be a bounded sequence in (L7,
0 and such that
{ Puk = O(l)H—l,

uk|$:0 =0.

(R; L3(£2)))", converging weakly to

Let w,, be the extension by 0 across {x = 0}. Then the sequence w,, is bounded in
(L2.(R; L*(R%)))". Let A be the space of n x n matrices of classical polyhomoge-
neous pseudo-differential operators of order 0 with compact support in R x R? (i.e,
A = @Ay for some ¢ € C5°(Rx R?)). Let us denote by M™ the set of nonnegative
Radon measures on T*(R x R?). Following [13, Section 1|, we have the existence

of the microlocal defect measure as follows:

Proposition 4.2.6 (Existence of the microlocal defect measure-1). There exists
a subsequence of (u*) (still denoted by (u*)) and p € M™ such that

VA € A, klim (Agk,yk)Lz(RXQ) = <E,O’(A)>, (4.2.15)

where o(A) is the principal symbol of the operator A (which is a matriz of smooth
functions, homogeneous of order 0 in the variable £).
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From [13, Théoréme 15|, we have the following proposition.

Proposition 4.2.7. For the microlocal defect measure p defined above, we have
the following properties.

e The measure pi is supported Char(P) N (R x Q), where Char(P) is defined in
(4.2.13).

o The measure pu does not charge the hyperbolic points in OM :

u(H) =0.

o In particular, if n = 1, the scalar measure p is invariant along the generalized
bicharacteristic flow.

On the other hand, let A be the space of n x n matrices of pseudo-differential
operators of order 0, in the form of A = A; + A;, with A, a classical pseudo-
differential operator with compact support in M(i.e, A; = pA;p for some ¢ €
Ce°(M)) and A, a classical tangential pseudo-differential operator in M (i.e., A; =
@A for some p € C°°(M)). Then denote

Z = j(Char(P)), Z=Z U j(T"M|s—0),
where j is defined in (4.2.14) and
7= (I\M)R, 7= (TR,

SZ and SZ are the quotient spherical spaces of Z and Z and they are locally
compact metric spaces. Here, we identify the zero section M x {0} c® T*M with
M itself.

For A € A, with principal symbol a = o(A), define

k(a)(p) = a(i~(p)),¥p € "T*M.

Now, we have that £ = {k(a) : a« = 0(A),A € A} C COA(SZ; End(C™)). Define
M to be the space of all positive Borel measures on SZ. By duality, we know
that M™ is the dual space of CJ(SZ; End(C")), which verifies the property:

(,a) > 0,Va € C°(SZ; End*(C")),Yu € M™,

where End*(C™) denotes the space of n x n positive hermitian matrices. Following
the article [15] by Burq and Lebeau, we obtain the existence of the microlocal defect
measure and some properties as follows:
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Proposition 4.2.8 (Existence of the microlocal defect measure-2). There exists
a subsequence of (u¥) (still noted by (u*)) and p € M™ such that

VA € A, klim (Au, uF) 2Ry = (1, (0 (A))). (4.2.16)
—00
Lemma 4.2.9. The microlocal defect measure p defined in Proposition 4.2.8 sat-
isfies that plyue = 0, where H is the set of hyperbolic points and £ is the set of
elliptic points as defined in Subsection 4.2.3.

In the following, suppose that there is no infinite contact between the bicharac-
teristic of p and the boundary. This hypothesis implies the existence and unique-
ness of the generalized bicharacteristic passing through any point, which ensures
that the Melrose-Sjostrand flow is globally well-defined. By a suitable change of
parameter along this flow, we obtain a flow on SZ. Consider S a hypersurface tran-
verse to the flow. Then locally, SZ = R, x S, where s is the well-chosen parameter
along the flow. We have the following propagation lemma for the microlocal defect
measure.

Lemma 4.2.10. Assume that the microlocal defect measure p is defined in Propo-
sition 4.2.8. Then p is supported in SZ and there exists a function

(s,2) ERg x S+ M(s,z) € C"

pu—almost everywhere continuous such that the pullback of the measure p by M (i.e.,
the measure P*u = M*uM defined for a € C°(SZ)) by

(M*puM,a) = (pn, MaM™)

satisfies
d Pu=0
s’ T

We say that the measure p is invariant along the flow associated with M. Further-
more, the function M is continuous, and along any generalized bicharacteristic, the
matrixz M is solution to a differential equation whose coefficients can be explicitly
computed in terms of the geometry and the different terms in the operator P.

For the differential equation that M satisfies, one can refer to [15, Section 3.2]
for more details.

Remark 4.2.11. Roughly speaking, in the result above, the Frobenius norm of M
describes the damping of the measure p, whereas the rotation component of M (i.e.
the orthogonal part of the polar decomposition) describes the way the polarization
of the measure (asymptotic polarization of the sequence (u¥)) is turning.
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Remark 4.2.12. Notice that in [13, Section 3], the author considered the case of
solutions to the wave equation at the energy level (bounded in H},), and hence was
considering second order operators. However, it is easy to change the energy level
into L?, one can see [}4, Remark 4.4] for more details.

Remark 4.2.13. From Proposition 4.2.7, we know that supp(u) C Char(P). No-
tice that in the interior of M, the two definitions coincide, i.e., for any pseudo-
differential operator A of order 0 with principal symbokl o(A) satisfying supp(c(A)) C
Char(P)|y, we have {u,0(A)) = (u, k(0(A)), simply by their definitions. At the
boundary, since both measures p and p do not not charge the hyperbolic points in
OM, we know that plg; = p holds p almost surely and i almost surely. Under this

sense, we can identify the two measures.

4.3 Proof of the sufficient part of Theorem 4.1.16
in the case ny =2

In this section, we shall present the sufficient part of the proof of Theorem 4.1.16
in the case ny = 2 (and of course n; = 1). We divide the proof into three steps.
Firstly, we give a reformulation of System (4.3.1). Then we study a simpler problem
and obtain a compatibility condition for it. At last, we present the proof for the
general case.

4.3.1 Reformulation of the system in symmetric spaces

In the case ny = 2, we write System (4.1.1) as follows:

O2ui — diAuj + oaqu? + agui =0 in (0,7) x €,

Q?U% — dQAU% + CLHU% + CL12U% = blflw in (0, T) X Q, 431
Gtzu% — dQAU% + CL21U% + CLQQU% = belw n (07 T) X Q, ( e )
u%zO,u? =0 on (0,7) x 09, 7 =1,2,

with initial conditions
(u}((), x), u%((), x), u%(O, x), Gtu} (0,x), &gu%((), x), 8tug(0, x))

belonging to a space that will be detailed later on.
Before we reformulate the system, we introduce the Brunovsky normal form.

Theorem 4.3.1 (Brunovsky Normal Form). Assume that A is a square matriz
of size n x n, B is a matriz of size n X 1 and (A, B) satisfies the Kalman rank
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condition. Then, there exists an invertible matriz P such that A = P~'JP and
B = P~ le,, where

1 0 0 0
J = 00 0 , and e, = : : (4.3.2)
_an DY —a2 _al 1

and the coefficients (a;j)1<j<n are defined by the characteristic polynomial of A, i.e.
Xa(X) = X"+ a X"+t ap X+ ay.

One can find for instance the proof in [50, Théoréme 2.2.7] for this theorem.
Now, we set A, B, and « by

e 11 a2 5 by .
A—(am a22),B—(b2>,anda—(al,ag).

Then, we obtain A = ( 8 (;1 ), B = ( % ) As a consequence of (4.1.6), we

know that (A, B) satisfies the Kalman rank condition. Hence, by the Brunovsky
normal form, there exists an invertible matrix P such that

A:P( 0 1 >P1,E’:]5(?),and&:(&1,5z2):a]51.
2

—a; —a
Furthermore, according to the third statement of Proposition 4.1.6, we know that
0~42<d1 — dg))\ + o # 0,\V/>\ € O'(—AD). (433)

Using the change of unknowns

~1 1
Uy Uy
@ | =(" 2w, (4.3.4)
5 0 P 2
Ua Ua
we obtain a simplified system
(O] + aq @t + ants =0 in (0,7) x Q,
Oyu? + a2 =0 in (0,7") x €,
Dgﬂg — alﬂ% — Clg’ll% = flw in (0, T) X Q,
ai = 0,a? =0, u’ =0 on (0,T) x 99,
(@h(0,z),32(0, x), 430, 2))| =0 = (uﬁ) ui? ug(l)) in Q,
4.3.5
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Therefore, the exact controllability of System (4.3.1) is equivalent to the exact
controllability of System (4.3.5). Classically, given the initial conditions

(@7, 3", i @3") € Hi(Ap) x Hy(Ap) x Hy(Ap) x H(Ap),
the solutions 4} and u3 satisfy
ﬂ’% € CO([0> T]? HS%(AD)) n Cl([()? T]? HSIZ(AD))v
2 € CO[0, 7], Hy(8p)) N C (0, T], HY(Ap)).

As for the regularity of the solution @1, it depends on the coupling term ¢ 43+ 3.
Thus, it is natural to discuss in two different cases, i.e. as # 0 and a = 0.

4.3.2 The case ay; =0

In what follows, we will present into details the proof of Theorem 4.1.16 firstly in
the case ny = 2 (and ny = 1 by Proposition 4.1.6), and A; = (a1, 0). Here, for the
sake of simplicity we remove the ™ in our notations and we investigate the system

( Ohul + aqu? =0 in (0,7) x Q
Ohu? + ul =0 in (0,7) x Q
(hus — ayut — aui = f1, in (0,7) x Q, 136
u%zO,u? =0 on (0,7) x 09, j =1,2, (4.3.6)
(u%> ufv u%) |t=0 = (u}’ov u%’[]? ug,o) in €2,
[ (B, 03, 0u3) |0 = (wy,ui,upt) i Q
For this system, we have the following well-posedness property.
Proposition 4.3.2. Assume that the initial conditions satisfy
(w1, uy® ui uyt) € H3(Ap) x Hy(Ap) x Hy(Ap) x HY(Ap),
(u”,ur) € Ho(Ap) x Hy(Ap).
Additionally, assume that
(—AD)QU}’O ADU € HQ(AD) (—AD)2U}’1— ADU € HQ(AD)
dl d2 d1 d
(4.3.7)
Then, the solutions ul, u? and u3 satisfy
u% € OO([()? T]? Hé(AD» N Cl([oa T]? HKB‘!(AD))v
u% < CO([()? T]’ HKQZ(AD)) N Cl([ov T]v HS%(AD))’
uy € C°([0,T], Hy(Ap)) N CH([0, T, Ho(Ap)),
(—Ap)u} = ———Apu} € C°([0,T], Hy(Ap)) N C'([0,T], HY(Ap)).
11— dg
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Proof of Proposition 4.3.2. Classically, given the initial conditions
(u%oau%[)?u%l?u%l) € HKQZ(AD) X Hfll(AD) X H£12<AD) X Hg(AD)a
the solutions u? and u3 satisfy

ui € C°([0, 7], Hy(Ap)) N CH([0, T1, Ho(Ap)),

4.3.8
u} € CO0, ], By (8p)) 1 C(0. 7], H(Ao). 38
According to Lemma 4.2.2, given the initial condition
u®uyt € Hy(Ap) x Hy(Ap),
the solution uj satisfies
uj € C°[0, T, Hy(Ap)) N CH[0, T, H3(Ap)). (4.3.9)

Let us first do some reformulation for the system. Define the transform Sy by

u) vy
Sol wi | =1 v |, (4.3.10)
u3 v3
where
v = Diuy,
vi = Dyl (4.3.11)
V3 = u3

We need to invert the previous relations by expressing u}, u?, u3 in terms of
vi, v?, v3. Firstly, for the term uZ = v2, there is nothing to do. Then, we look
at the term u?. We need to “invert" in some sense the operator D;. We use the
second equation of System (4.3.6). We apply D; on the second equation of System
(4.3.11), and we obtain

Dw? = D3

= us — dyAu?
=03 — dyAul.
Hence, we obtain that
2 (_AD)_1 2 2
uy = d—z(Dtvl —03). (4.3.12)

For the last term ui, we apply D; on the first equation of System (4.3.11), then
we use the first equation of System (4.3.6), the second equation of System (4.3.6)
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and the last equation of System (4.3.11) to obtain

Dy = Dy (Diuy)
= alDfu% — dlADfu%
= oy (ul — dgAu%) dyAp(ayu? — dlAu%)
( dlA) ul — Oél(dl + dg)AUl + 0611)2

Therefore, from the above computations, (4.3.11), and (4.3.12), an inverse trans-
form is the following;:

U% — = AD) (Dtvl +a1d1+d2DtU1 +a1d1 2)

_ -1
u? = %(Dtv% —v2), (4.3.13)
u3 = v3.

From the regularity results given in (4.3.8), (4.3.9) and the relations (4.3.13), we
obtain that

v € CY([0, T; Ho(Ap)) N CH([0, TT; Ho(Ap)),

v2 e C[0, T); Hy(Ap)) N CH([0,T); HY(Ap)), j = 1,2. (4.3.14)

Moreover, from (4.3.6) and (4.3.13), (v}, v}, v2) satisfies the following system:

Oyvf + g Dv? =0 in (0,7) x Q
Oyv? + Dyv3 =0 in (0,7) x €
Oyv? — %(Dtvl —v3) —agvs = f1, in (0,T) xQ
v = 0,7 =0 on (0,7) x99, j =1,2,
(4.3.15)
with appropriate initial conditions. Using the identity
1
—-D? = (dy0y — dy0y), (4.3.16)
dy — dy
we obtain that i
D20} = ————(dy00; — d05)07. (4.3.17)
dy — dy
Using (4.3.17) in the first equation of (4.3.15), we also deduce that
Oéldg a1d1
Oy (o) — T - D3 = 0. 4.3.18
1 (U1 dy — dy U1) 4y — dy U ( )
Now, let us define
d
y = Dyv; — iz D? (4.3.19)
dy — dy
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Then, by (4.3.19) and (4.3.18), we obtain that
—————Djv3 =0. (4.3.20)
We also remark that by using (4.3.16),

_D? = Eéf%faI(dztjl-—-d1E]2)v§. (4.3.21)

Using the last equation of (4.3.15) together with (4.3.20) and (4.3.21), we deduce
that

a1dyds 2) O[ld% alald%(—AD)* Oélagd 9
0 + 0 | = + Dw? +——1
' (y (dy —dy)? ? (d2 — dy)? dy(dy — dy)? (Divy=vs) (dy—dy)? %
(4.3.22)
Let us now express y with respect to the original variables u}, u?, u3. From (4.3.19),
(4.3.11) and the first equation of (4.3.6), we obtain that

a]_dQ
—D 1 D 2
T T g -,
Oéldg
= Dfu} 1% p;
d
— p2( p2yt — Q12 o
t ( tul d2 . dl Uy (4323)
ard
— D? (—dlAu} +oqud — W 1_21 u%)
=D? | —d;Aul — ds u?
t 1 1 dQ . dl 1)

Combining with the second equation of (4.3.6), we obtain

Oéld% 2 Oéldl 2
A
A M A R AL

y = (—diA)uy —

Hence, we obtain

apdad; a1d1 2 ald% 2
= (—d, A - —Auy + ——us.
(dy — dy)? Uy = (~diA)u dy — dy (dy — dy)? 2
Now, we define
~ aqdady 2
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Then, y satisfies

oqald%(—AD)*l
da(dy — dy)?

2
Oél(lgdl 2

(do — dy)? °

O[ld%

[+ (Do —v3) + (4.3.24)

The initial condition associated with g is given by

d? o d?
- —dA21—a11A2 107 2)
y|t—0 (( 1 ) ul dl . dQ uy + (dQ dl) U2 |t—0

d? o d?
— (—d A2y — CY11A2,0 147 2,0
( 1 ) Uy dl —d2 Uy + (d2 d1)2 2
d2
S B2 (mA0 - M A2 20
1 (( ) uy 4, — dy Uy + (ds —d1)2u2
B ayd? ad?
aty|t:0 = ((—dlA)QatUi - dy — ! dgAat 1 ﬁ&tug) |t:0
_ (—dlA)2 %1 1d1 Au2’1+ 061d1 2,1

LU
dy—dy ' (dy—dy)??

d2
— 2 (=A)? 11 A 2,1 Q1aj 2,1‘
1 << ) Uy dl —d2 Uy + (d2 _d1)2u2

Hence, from our Hypothesis (4.3.7) together with (4.3.8) and (4.3.9), we deduce
that

g]|t:0 S Hgll(AD), 8tg]|t:0 € HS(AD) (4325)

By (4.3.24) and (4.3.14), y satisfies a wave equation with a source term in the
space L'((0,T), H(Ap)) and initial condition in H(Ap) x H(Ap) by (4.3.25).
We deduce that

§ € C°([0,T]; Ho(Ap)) N C([0,T]; Ho(Ap)).

Hence, from (4.3.24) and (4.3.23), we deduce that

D Awd+ — 2 € [0, T); Hy(Ap)) N CH([0, T); HY(Ap)).

AVt —
( )ul dy — dy ! (d2_d1)2

Taking into account the last line of (4.3.8), this implies that

(=)} = oA € CO0. 1, H(Ap)) N C(0.7), H(Ap))
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Remark 4.3.3. Let us define the transform S associated with the system (4.3.6)
and (4.3.26) by

uy vy
S|l uwi | =11,
u3 v3
where . .
2 ard ard
(_dlAD> _dliéQ D (d2id11)2
S = 0 D, 0 ;
0 0 1
and its “inverse”
(=Ap)™®> _ai(=Ap)~? Oél(dl—?dz)(—AD)”)
. d2 (dz(d1)—d12) t dz((d1—d2))21
1 _ o/ N
S 0 2D 2L
0 0 1
The previous computations show that we have a bijection between the solutions of
1 1
Uy U1
(4.3.6) and (4.3.26). Notably, if U= | u? | andV = | v} |, then SoS™'V =
2 2
Uy Uy

Vand S1oSU =U.
Notably, (4.3.6) can be rewritten as

(82 — DA + A)(S™! o SU) = bf.
Therefore, since S(U) =V we are able to rewrite the system (4.3.26) as follows:
(0?2 = SDS™'A + SAS™YH)V = Sbf,

where
asd?
(dl—d12)2f
d1 0 0 0 (05) 0 0
D = 0 d» O , A= 0O O 1 , Sbf = :
0 0 ds 0 —a; —as 0
/

Moreover, we could notice that both S and S~ only involve D; and (—Ap)*, k € Z.
This abstract point of view will be useful in the proof of the general case given in
Section 4.4.

Now, we consider the exact controllability of System (4.3.6) in the space Hi x
HY, according to Proposition 4.3.2.
We have the following result:
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Theorem 4.3.4. Given T > 0, suppose that:

1. (w,T,pg;) satisfies GCC, i =1,2.

2. Q) has no infinite order of tangential contact with the boundary.
Then System (4.3.6) is ezactly controllable in Hi x HJ.

Recall that here the state space Hi x HJ is given by

Hy = {(u,v1,v2) € Hy(Ap) x Hi(Ap) x HY(Ap),
2
(—d1A)*u — ad; Av, € H5(Ap)},
dy — ds
Ho = {(u,v1,v2) € HY(Ap) x Hy(Ap) x H(Ap),
2

oard
(—dlA)zu — dl 1_22A’U1 € H?)(AD>}

Proof of Theorem 4.3.4.
By the computations of Proposition 4.3.2, proving Theorem 4.3.4 is equivalent
to proving the exact controllability of the following system:

( 2
Ohop — om;;c(ldi )) (Dywi —v3) — (Zﬁz—%? vy = djlfll)z fl, in (0,7) x €,
Oovf + Dy =0 in (0,7) x
Oy03 — 22207 (D — 03) — agv ~ 1, in (0,7) x Q,
v =0 on (0,7) x 9,
V¥ =03 =0 on (0,7) x 99,

(4.3.26)

with initial conditions

(U%,U%,Ugﬂt:o € (H&(Q))?) = 313’

(Opvr, O, v )| i=o € (LA(Q))° = £7,
in the state space .3 x Z3. Recall that we defined Z* = (H5(Ap))" in (4.1.5).
According to the Hilbert Uniqueness Method of J.-L. Lions [38], the exact con-

trollability of System (4.3.26) is equivalent to proving the following observability
inequality: there exists C' > 0 such that for any solution of the adjoint system:

([ Oyw! =0 in (0,7T) x Q,
araird —Ap)~1 .
Ohwi — %Dt %thg =0 in(0,7) x €,
araidi(—A
Caw3 —i—2 Dyw? — agw3 jL %Uh
—(3212%2 wy + al(fiD) w3 =0 in (0,7) x Q,
wi =0 on (0,7) x 09,
| wi=w3 =0 on (0,7) x 09,
(4.3.27)
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with initial conditions

(wi, wi, w3)|i—o € £, (4.3.28)
(0wl Ow?, Oyw?)|i—o € L2, (4.3.29)
we have the following observability inequality:
! adj 1 2 ’ 2
C/O /w mwl +w;| dxdt > HW(O)]|%3X$§1, (4.3.30)

where W = (w}, w}, w3).
Remark 4.3.5. As we showed in Remark 4.3.3, we are able to rewrite the system
(4.3.27) as follows:

(02— (S)'DS'A + (S') ' A*SYW = 0.

However, we should pay attention to this S’, which is defined as the invertible
transform between two adjoint systems. S’ could be seen as the “adjoint” operator
of §. To be more specific, we write the original adjoint system as follows:

O, 2} =0 in(0,T) x Q,
Oz + ay2f —ayz =0 in (0,T) x Q, (43.31)
(22 + 22 —agz2 =0 i (0,T) x 9, -
21 =0,z =0 on(0,T)x0%,j=1,2.
The transform 8" associated with the system (4.3.27) and (4.3.31) is defined by
w) )
S| w | =1 2|,
w} %
where
(—dAp)? 0 0
ard? arardi(—Ap)~! a1(=Ap)~"
S/ = _dll_dl2 D + d: dlg(clll_dQ?Q Dt ! d2D s (4332)
[$21
(d2—d11)2 0 1
and its “inverse” by
(—dlAD)72 0 0
ap(— —2 —
()= | —UGD, (—daAp)TID, 0
al(fA )72
— T 0 1

Moreover, we could notice that both ' and (S')~" only involve Dy and (—Ap)*, k €
Z. As already written, this point of view will be useful in the proof of the general
case given in Section 4.4.

We divide the proof of the observability inequality (4.3.30) into two steps.
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Step 1: establish a relaxed observability inequality.

Firstly, we establish the following relaxed observability inequality for the adjoint
System (4.3.27).

Proposition 4.3.6. For solutions of System (4.3.27), there exists a constant C' >
0 such that for any solution of (4.3.27) with initial conditions verifying (4.3.28),
we have

T
WO g0 < C ( |

Proof of Proposition 4.3.6. We argue by contradiction. Suppose that the
observability inequality (4.3.33) is not satisfied. Thus, there exists a sequence
(W*)ren of solutions of System (4.3.27) such that

d 2
e d;‘j ot | dadt 4 WOl s,

(4.3.33)

IWHO) w0, = 1, (4.3.34)

T o di 1Lk o]
—— L _w" +wy"| dedt — 0 as k — oo, 4.3.35
/0 /w (dy —dy) " ? ( )
HWk(O)Hf(/EIXﬁQ —0as k — oo. (4.3.36)

By the continuity of the solution with respect to the initial data of System (4.3.27),
we know that the sequence (W*),en is bounded in (L2((0,T) x ©))? and moreover,
Wk —~01in (L2((0,T) x Q))3. W* satisfies the following system:

Chwi ™ o(l)g-1 in (0,7) x Q, k — o0
Cow?* o(g-r in (0,7) x Q, k — oo (4.3.37)
Oywy® + D™ = o(1)g—1  in (0,T) x Q, k — oo,

where the first equation is decoupled from the two last equations.

Remark 4.3.7. We say f* = o(1)y—1 of imyoo || f*]|-10r)x0) = 0. Let us
—1

explain briefly how to obtain (4.3.37). We take the term %thg’k for in-

stance. Other terms can be treated similarly. For %thg’k, we know that

%thi’“ € L*((0,T); H)NH'((0,T); HY) is a bounded sequence and con-

verges weakly to 0. Since the injection from L*((0,T); H3) N H=1((0,T); HY,) to
H=(0,T) x Q) is compact, we obtain that %thg’k =o(l)y-1.

Hence, we obtain two microlocal defect measures B, and I8 associated with

(w%’k)keN and (W2*)en = (w%’k,wg’k)keN respectively. From the definition in
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Proposition 4.2.6, we know that

VA € A7 <E17 U<A)> = ’}Lm (Aw17k7w1yk>l/27 ( )
> 4.3.38

(1, (i, ), 0 (A)) = lim (Aw?™, wi)pe, 1 < j <2

_ —00

Here pu, = (p,(i,))1<ij<2 is the matrix measure associated with the sequence

(W?M)gen = (wf’k, w%’k)kEN and w‘zk is the extension by 0 across the boundary of
Q (1 <i,7 <2). Moreover, since the two characteristic manifolds Char(pg,) and
Char(pg,) are compact and disjoint, p , and g, are mutually singular in (0,7T) x

), from the first point of Proposition 4.2.7. Therefore, we obtain the following
property:
Lemma 4.3.8. For A € A with compact support in (0,T) x Q and for 1 <i <2,

we have
lim sup |(Aw; ™, w?"*) 12 mxg)| = 0. (4.3.39)

k—o0
Proof. We follow the same strategy as for the proof of [44, Lemma 4.10]. Since
Char(pg, ) and Char(pg,) are disjoint, we choose a cut-off function 5 € C*°(T*R x
RY) homogeneous of degree 0 for |(7,£)| > 1, with compact support in (0,7) x
such that

Blcharpa,) = 1; Blchar(ps,) = 0, and 0 < 8 < 1.
Since A € A with compact support in (0,7") x €, for some ¢ € C§°((0,T) x
we have that A = pAp. We introduce ¢ € C5°((0,7") x w) such that @|supp(y)
i.e, ¢p = . Now, let us consider (Awl™, w2*),2. First, we have that

),

IS

(Aw}™, wy™) 2 = (pApw,™, we*) 2

= (pApuwy™, puy®) 12
= ((1 - Op(8))pApw; ™, gwy™) 2 + (Op(B)pApwy™, Gwy™) 1.
For the first term ((1—Op(8))pApw;™, gwy"*) 2, by the Cauchy-Schwarz inequal-
ity, we obtain that
(1= Op(B))pApwi*, gw3*) 12| < [/(1 — Op(B))pApwi™|| 2| w3 || 2. (4.3.40)

As we know that {w2>*} is bounded in L2 (Rt x R?), there exists a constant C
such that
llews"|17: = (Pws*, gwy®) 2 < C. (4.3.41)

From the definition of the measure u L we obtain
Lim [[(1 = Op(8))pApuwy*|[7. = lim (1 Op(8))pApw™, (1 — Op(8))pApwy™®) 2

= (u,, (1 = B)°¢*|o(A)*).
(4.3.42)
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From Proposition 4.2.7, we have that supp (u,) C Char(pg, ). In addition, by the
choice of 3, we know that 1 — 8 = 0 on supp (Hl), which implies that <H1’ (1-—
B)2¢* o (A)|?) = 0. Combining (4.3.40), (4.3.41) and (4.3.42), we obtain

limsup |((1 — Op(B))pApw;™, gw3®) 2| = 0. (4.3.43)

k—o0

The other term is dealt with similarly. One can refer to [44, Lemma 4.10| for more
details. O

Let us go back to the proof of Proposition 4.3.6. We know that

[

For x € C3°(w x (0,7)), by expending the above expression,

2

d2
mwi’k + U};’k dzdt — 0 as k — oo.

d% 1,k 2.k
2(mxw1 y XWs )L?(Rxg)

d? d?
1 Lk —1d)2xw%7k)L2(RXQ) + (Xw;’k, Xwg’k)Lg(RXQ) — 0, as k — oo.
1

+((d2—d1)2xw1 ’(dg—

By Lemma 4.3.8, we know that

2
di 1,k

(X, 7Xw§’k)L2(RxQ) = 0.
(dy — d1)?

lim sup
k—o00

As a consequence, since we know that

d% 1,k 2.k
(dy — d1)2w1 w20,
we deduce that
_ di Lk d7 1,k
(a0 @ e ey = 0

(xws™, Xwg’k)B(RxQ) — 0, as k — oo.
Thus, using (4.3.38), we know that (here p1o = (p2(7, 7))1<i j<2 is a matrix measure)
H1|(O,T)><w = 07 and H2(2a 2)|(0,T)><w =0.

For pu , since p1  is invariant along the general bicharacteristics of py,, combining
with GCC, we obtain as usual that u | =0. For p,, we consider another definition
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of the microlocal defect measure. From the definition in Proposition 4.2.8, we
know that there exists a measure py such that

VAc A, (ug, k(c(A))) = lim (AW>F W) .. (4.3.44)

k—o0

Since H2|Char(pd2) = o fto-almost surely by Remark 4.2.13, we obtain that £12(2,2)(0,7)xw
= 0. In the following part, we aim to prove that u, = 0. The basic idea is to use
Lemma 4.2.10. Here we recall this lemma under our setting of this adjoint system.

Lemma 4.3.9. Assume that ps is the corresponding microlocal defect measure
defined by (4.3.44) for the sequence (w%’k,wg’k)keN which satisfies the following
system (according to (4.3.27)):

{ Cow?* =o(l)g— i (0,T) xQ, k— o0 (4.3.45)

Oowy® + D™ =o(1)g1 in (0,T) x Q, k — oc.

If we denote the general bicharacteristic by s +— ~y(s), then along v(s) there exists
a continuous function s — M(s) such that M satisfies the differential equation:

d

—-(M(s)) =iB(r)M(s), M(0) = Id,

and g 18 1nvariant along the flow associated with M, which means that

d
—(M*us M) = 0.
ds( K2 )

Here we denote by E(7) the matriz ( 8 6 ) :

Remark 4.3.10. For the differential equation which M satisfies and the explicit
form of the matriz E which we use here, one can refer to [15, Section 3.2] for
more details.

Remark 4.3.11. In our setting, we can compute explicitly the form of the matrix

ue=(5 1)

and T is a constant with respect to s along the generalized bicharacteristic by the
explicit form of Char(P) given in (4.2.13).

Now we use this Lemma 4.3.9 to prove that ps = 0. First, we would like to show
that supp(ue) N7 1((0,T) x w) = 0. Let us fix some point py € 7 1((0,7T) X w).
Then, there exists a unique bicharacteristic s — 7o(s) such that v,(0) = po.
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Moreover, there exists € > 0, which is sufficiently small, such that v, ((—2¢, 2¢)) C
7 1((0,T) x w). Since py is invariant along the flow associated with M, we obtain
(0) = M(e)*a( ) M(e). Let

(D) e ()

By a straightforward computation using the special form of M, we have
M (e)ea =iTeM (€)ey + es.
Hence, we obtain

p2(0)ex = M(e)*pz(€) M (€)ez
= M (€)* pua(e)(iTeM(€)er + e2) (4.3.46)
= iTeuz(0)er + M(€)"pa(€)es.

We know that 4i5(2,2) = 0 on (0,7T') x w, which means that w5, — 0 strongly in
L?((0,T) xw). Hence, by (4.3.38), we also have that us(€)es = 0. Hence, we obtain
p2(0)es = —iTeu(0)e;. But by the choice of py, we know that p5(0)es also vanishes,
which gives that —iTeps(0)e; = 0, i.e. p2(0)e; = 0. Hence, p2(0) = ( 8 8 )
Since py is arbitrary, we deduce that supp(u2) N7~ 1((0,7) x w) = 0.

Now, let us go back to prove that us = 0. For any point p; € supp(psz),
there exists a unique bicharacteristic s +— ~;(s) such that v,(0) = p;. Using
the GCC (see Definition 4.1.1), we know that there exists a time ¢, such that
Y1 (to) € m1((0,T) x w). Since ps is invariant along the flow associated with M,
we obtain

We already know that supp(pz) N 77 1((0,T) x w) = (), which means that
pa(to) = 0. By (4.3.47), we deduce that ps(0) = 0. Due to the arbitrary choice
of p1, we obtain that supp(us) = 0, i.e. us = 0, which leads to a contradiction
with (4.3.34) (See [44, Section 4.2] for more details). We conclude that the relaxed
observability inequality (4.3.33) holds for all the solutions of System (4.3.27). =

Step 2: analysis of the invisible solutions

With the relaxed observability inequality (4.3.33) in Proposition 4.3.6, we are now
able to handle the low-frequencies and conclude the proof of the observability
(4.3.30). The main point here is a unique continuation result for solutions of
the elliptic problem associated with System (4.3.27). The idea of reducing the
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observability for the low frequencies to an elliptic unique continuation result and
associated technology are due to [10]. First, let us write for the sake of simplicity
the initial conditions as

W = (w”, wi Wy wt wit wit) (e L x £8), (4.3.48)
and define for any 7" > 0 the set of invisible solutions (see [10]) from (0,7") x w

M(T) = {W € £} x £, such that the associated solution of System (4.3.27)

d2
satisfies Mg&i—olll)?w%(x’t) +w3(z,t) = 0,Y(z,t) € (0,T) x w}.

We have the following key lemma, which is proved at the end of this section.
Lemma 4.3.12. 45(T) = {0}.

Assume for the moment that Lemma 4.3.12 holds. As for the proof of the
observability inequality (4.3.30), we proceed by contradiction. If the observability
inequality (4.3.30) were false, we could find a sequence (W*),cn of solutions to
System (4.3.27) which satisfy

IWEO) a0, = 1, (4.3.49)
@1d1 2,k ’
=, Frwd®| dedt — 0 as k — co. (4.3.50)
) —

By the well-posedness, we know that (W*),cy is bounded in L?((0,T) x ). Hence,
there exists a subsequence (also denoted by W*) weakly converging in L2((0, 7)) x

Q), towards W € L?*((0,T) x ), which is also a solution of System (4.3.27)

(since what we consider is a linear system) and satisfies that %wl +wi=0

n (0,7) x w. Thus, we know that W(0) € A4 (T) = {0}, which implies that
W(0) = 0. Since the embedding L? x Hy'(Ap) — Hy'(Ap) x Hy*(Ap) is
compact, we obtain that ||Wk(0)||.,22ﬂflxzﬁ2 — ||W(0)||.,22”31><$E2' From the relaxed
observability inequality (4.3.33), we know that

1< OIWO) s 0,

which contradicts to the fact that W (0) = 0. Then we can conclude the observ-
ability inequality (4.3.30).
It only remains to prove Lemma 4.3.12.

Proof of Lemma 4.3.12. According to the relaxed observability inequality (4.3.33),
for # € A (T), we obtain that

WO pgn, < CUW O] a g, (4351)
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We know that AV/(T) is a closed subspace of £ x .£3,. By the compact embedding
L2(Q)x H1(Q) — HY(Q) x H%(), we know that A/(T) has a finite dimension.
Then, we define the operator &7 as

0

0

0
—di1Ap

0 —dyAp

ocooo
oO=OO

S ©oooo
coor

_ (’1"'1(1%(_AD)71
dg(dy—dy)?

_ _ _ ar(=Aap)~t
dp(dy—dy)? (dg—dy)? 0 d2Ap —az + da 0

_(11(—AD)71
da

- o OO ~=Oo

ajajdi(—ap)~?! ajagd? o

We know that the solution (w},w?, w3, Diw;, Dyw?, Dyw3)! can be written as
—e "y,

where # is defined in (4.3.48). Let 6 € (0,7), we know that (4.3.51) is still true
for # € N (T—46). Taking # € A (T), for € €]0, 5[, we have e=““ W € N (T —9).
For « large enough, as € — 0,

1 -
(a+ @) ' =(Id—e VW = (a+ ) ' AW ase — 0TA in L2 x L3, (4.3.52)
€
Remind that
d
D(ef) ={U € £} x Zfﬂa(e_t”)t:m converges}. (4.3.53)

Since |[( + /)" - || gsxgs, is a norm, (4.3.52) means that (Id — e )so 18
convergent for this norm. Since all norms are equivalent on the finite-dimensional
linear subspace .4 (T'), we notably deduce that (Id — e=“?)# converges in % x
Z3,, so that # € D(«/) by (4.3.53). We deduce that N(T — §) C D(<). Since
this equality is true for any ¢ € (0,7), we deduce that N(T') C D(</). Hence, for

W € N(T), we have

d
E(eit&?{(W))t:(ﬁ — —@{W

Since N(T) is clearly stable by differentiation with respect to ¢, we deduce that
AW € N(T). This implies that & A (T) C A (T) C £ x £3,. Since A (T)
is a finite dimensional closed subspace of D(.7), and stable by the action of the
operator 7, it contains an eigenfunction of «7. Let us consider such an eigenfunc-
tion (99, 99, ¢3, d1, dd, #1) € A (T), associated to an eigenvalue v € C, so that we
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have
& = vgl,
% - V¢27
il’, = V¢37
_dlAD¢1 ) = V¢i>
arards(—A
~dyApgh — 1d;(cll§fd£2) ¢1 — iD) 2¢é = vy,
ay(— arards(—A ala d
—dyApd§ — ase) + iD) ¢35+ 1d12(clz§fd52) ) — a9 = v,
\( a1d 2¢0+¢3>|w =0.
(4.3.54)
Let us define a change of variables:
p1 = diAL P
« d ai(— -1 a d
P2 = vy + 54 A o1 + 2 ip) ((d1 : 2¢0 +83), (4.3.55)

ad
Y3 = (dv 1d2)2 ¢O + ¢3

Remark 4.3.13. We could make a link between the transform S' and (4.3.55).
Formally, we are able to write

Y1 Cb(f
w2 | =S'(v,Ap) | &5 |- (4.3.56)
©3 o

Here we use the notation S'(v, Ap) to denote the transform replacing formally D,
by the eigenvalue v (remind that S’ involves only Dy and powers of Ap).

Then, we obtain a new system

—d1App; =12,
—daApps + a1p1 — a1z = Vs

’ 4.3.57
—daApps — asps + P2 = V2<,03, ( )
503|w = 0

Using the last equation of (4.3.57), we have

Palw = (V2<P3 + dyApps + a2903) o = 0.

Similarly, using the second equation of (4.3.57), we obtain ¢, = 0. Since ¢ =
(p1, @2, ¢3) is the solution of the elliptic System (4.3.57) verifying ¢|, = 0, by
usual unique continuation for elliptic systems, We obtain that ¢ = 0 on €.

Let us now go back to the eigenvector (¢, 99, @3, ¢1, @2, #1). The first line of
(4.3.57) gives that ayd?A%L ¢! = 0 on Q. Since 041 7é 0 by (4.3.3) and ¢ = A¢? =0
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on 99, we deduce that ¢9 = 0 on Q. The first line of (4.3.54) also provides that
¢1 = 0 on Q. Working on the second line of (4.3.57) and then on the last line of
(4.3.57), we obtain similarly that ¢ = ¢3 = ¢3 = ¢2 = 0 on Q, which concludes
the proof.

]

4.3.3 The case as; # 0

According to Lemma 4.2.2, given the initial condition
(") € Hy(Ap) x HA(Ap).
the solution @ to the first line of (4.3.5) satisfies
ay € C°([0,T), Ho(Ap)) N CH([0, 7], Ha(Ap)).

For technical reasons, we would like to work in symmetric spaces. We introduce
a change of variables

Qiad

1 2~1 202 o

vy = Diuy + ———u
t dl_dQ 29

2 ~2

v] = Dyug,

2 ~2

vy = Uj.

with the inverse transform defined by

~1 _ (=Ap)t 1 o1(=Ap)% 2 | (=Ap)~! _ andy N, 2
i = d1 11)1 didy U1 - di ( d1—da vy,
~2 _ (=Ap)~ 2 2

uy = "4, (Devi — v3),

~2 2
Uy = vj.

The exact controllability of System (4.3.5) is equivalent to the exact controllability
in the state space £ x £ of the system:

(Do} + (on — 242007 ) D? — (o2 4 20dlBp) )2 — ey,
DQ'U% + Dtvg = 0,
SR RS SEPW SRS S 7
v1]oQ = 0, V7[5 =0,j=1,2
\ (v}, 03,02, Oi, 02, 04v2) |i—o € L x L3
(4.3.58)
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It is equivalent to proving the following observability inequality: 3C' > 0 such
that for any solutions of the adjoint system

( Oy =0,
Ow? + (g — 29880) ) gt — 9800 2 =0,

J Ol + Dyt + (“E52= — ag)uf — (%22 + 24020 ") =0,
wiloQ = 0, w}lsQ =0j=1,2,
(w%aw%fwg)’t=0 = (wi707w%07w§’0> € D%S?

\ (atwh atw% alfw%)|15=0 = (w%J, w%lv w%l) € fo’l
(4.3.59)
we have the following observability inequality
T aed; 2 ? 2
C/O /w - d2w1 +w;y| dxdt > HW(O)H,%BX,%EI- (4.3.60)

We follow the same procedure to prove the inequality (4.3.60) as we presented in
Subsection 4.3.2. The proof is totally similar for the high frequency part. For the
low frequency part, the same computations lead to consider a unique continuation
property of the form

—d1Appr = V2€017

—dayApps + a1 — a3 = 1V, (4.3.61)
—dy Apps + a1 + @2 — azps = Vs, o
903|w =0.

This system is very similar to (4.3.57). The main difference is that from the two
last lines of (4.3.61), we only obtain for the moment that

asp1 + 3 =0 on w. (4.3.62)
Using (4.3.62) with the first line of (4.3.61), we deduce that
diApps = —diaAppr = Vs on w. (4.3.63)
From (4.3.63) and the second line of (4.3.61), we deduce that
(d1a1 — OdeQVQ) 01 — V2dips =0 on w. (4.3.64)
The unique solution of (4.3.62) and (4.3.64) is ¢1 = w3 = 0 on w if
(ag) (—1/2(11) -1 (d1a1 — Oézdgl/z) £ 0,

1.€.

OéQV2 (dl - dg) + d1a1 7é 0.
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The first line of (4.3.61) implies that there exists A € o(—Ap) such that v? = d;\.
Hence, 1 = 3 = 0 on w if

CYQ)\ (dl - dg) + oq 7é O,

which is the case thanks to (4.3.3). Hence, we have ¢; = p3 = p3 = 0 on w, and
we can then conclude exactly as in the previous case ay = 0.

4.4 Proof of the sufficient part of Theorem 4.1.16

We organize this section a little bit differently from the previous section. We start
by a modal problem to introduce the compatibility condition in this setting. We
follow by a reformulation procedure of System (4.1.2). At last, we finish the proof
of our main Theorem 4.1.16.

4.4.1 The modal case

Let f € L*((0,7),L*(Q)). For a fixed 1 < s < ny, we consider the following
system as a modal problem

(O + 35 auj =0 in (0,7) x Q,
Ooui + 43 =0 in (0,7) x ©Q,
Oatty, 1 + Uy, =0 in (0,T) x Q,
D2U312 - Zjil an2+1—jujz = f1, in (0,7) x €,
uj =0, u =0 on (0,T) x 90,1 < j < ny,
1,2 1,0 20 20 .
) y Ty t= - ) y T )
(ug,ug uy . )|i=o (uy™, uy uz?)  in Q
L (Owut, Opud, - -+, 02— = (upt ut, - ,uzl)  in Q.

(4.4.1)
In this section, we aim to prove the exact controllability of System (4.4.1) with the
help of proper compatibility conditions. For this modal System (4.4.1), we have
the following well-posedness property:

Proposition 4.4.1. Assume that the initial conditions verify

(U?O?u%ov T 7u121’20) € H82+378(AD) X H32<AD) X X H§12<AD)7
(ui7lau%1a T >u271) € H62+2_8(AD) X Hgf_l(AD) XKoo X HS%(AD)

n2
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Additionally, let us define U° and U by

no—s s ng—s—k

— k
U ( d A na—s+1 10+ ZZ Z a (nz S — )(_dlA)k(_dQA)nzskluifl
k=0 j=1 I=
ajdg ng—s—k dAnQSk’l20
DI M IR+ () (S

(4.4.2)

no—s s no—s—k
- —s—k
0" = (—dy A)==t! “+ ) O‘J( z )(—dlﬁ)k(—dzA)”Q‘S"“‘IU?b

a]dgdl nQ — S — k ng—s— k‘ l 2 1
YUY W( e T
(4.4.3)

Assume that U° € H5(Ap) and U' € HY(Ap). Then, the solution (ul,u?,--- ,u2)
satisfies

up € CO([0, T, Hy~*(A)) N CH([0, T, H5*H75(A)), (1.4.4)
u2 € CO(0, T, Hi ' (A)) N CH([0, T), HE2 7 (A)), 1 < j < no. -

Furthermore, we have

no—s s no—s—k
ng —8s—k
((—dlﬁ)m_sﬂui + 04j< ’ >(—dlﬁ)k(—d2A)”2_5_k_lU32'+z

’ {
k=0 j=1 =0

s mn2—2s+jno—s—k . d2 Ny —
J no—s—k—1, 2
TS e () caara

€ CO([O T, HQ(AD))HC” ([0, 7], Ho(Ap)).
(4.4.5)

Remark 4.4.2. Let ny = 2,5 = 1,7 = 1, then (4.4.5) becomes the following
condition:

1 1-k
( +Z ( ) AV (—dyAY 12
k=0 1=0
1
dod¥ 1—-k ol
+ Z Z —dy) (1. _ d\k+1 ( ) 1 u%+k+l

€’ (07T] Hq(Ap)) N CH([0, T], Hy(Ap)).
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Simplifying the formula, we obtain that

d d?
—dy A L (Cd Ay — 2
(( Al >u1+(d1_d2)2u2)

€ CO([Ov TL HS%(AD)) N Cl([07 T]? HS())(AD))

This is just the compatibility condition in the previous section.

Proof. As we have shown in the proof of Proposition 4.3.2, it is classical to obtain
the regularity of the solutions given in (4.4.4), following Lemma 4.2.2. Now, we
focus on the proof of the compatibility conditions (4.4.5), so we restrict to the case
s < ng according to Remark 4.1.10. We perform the similar reformulation for the
solutions of System (4.4.1):

1 _ pyne+2-s,.1
vy =D, Uy,

v = D,
e (4.4.6)

The transform above is “invertible”, and there are four different cases for the form

of the inverse, that is, no and ny — s are both even or odd, n, is even while ny, — s

is odd and the converse, that we do not detail here. We perform the same strategy

as we have already shown in the proof of the Proposition 4.3.2. Thus, we obtain
2

a system for vy, v7,- -+, v2 given by

(Dot + 325 a; D753 =0 in (0,7) x Q,

Oyv? + Dyv =0 in (0,7) x Q,
: 4.4.7
o2,y + D02, =0 in (0,7) x €, ( )

Oyvy, =202 apprju; = f1, in(0,T) xQ,

vy = 0,07 =0 on (0,T) x 90,1 < j < ny,
with initial conditions
(IU%?U%? e 7U7212)|t=0 = (0%707 U%’()? e 71}721’20)7 448
(Do), 002, -, B> — (pbl 2l Lo 2t (4.4.8)
tU1, OtVU1, ) tvn2)|t=O — (Ul y U1 7Un2 )
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We focus on the first equation. Let yj = vj + 72%-02. Then, we obtain

agd
DLU% =0 + P il Oy v?
1 — dy

d a.d
:_2: D P2 (dy — dy)Av?
@ dy — dy 2Us dl—dg( 2 1) Avg

ad
o no—s+2, 2 sU2 2 2
=— 5 a; Dy u; — p— Dy | — asdyAvy.

Since v? satisfies the equation Oyv? + D2 ; = 0 by (4.4.1), we obtain that

—5+2, 2 2 2 2 2
—as DT 0L — agdo AvE = —ag(Divs + daA)vs

OCSDQUE

= —OésDt’l}g+1.
This implies that

Qg d2

1_ ng—s+2, 2 2 2
Dhyo = — § ;D uj — 4 — dy Dy, — asDyvgyy

dy
== ;D — oy g 1) Dy,

S
agd
o no—s+2 2 st 2
=— E a; Dy Ll Dy, .
’ 1— a2

As a consequence, using the definition v2 | = D ™2 | we know that y}
satisfies the equation

s—2
asd

Dlyo + Z Oz]Dng s+2,,2 + - 1d2 Dtv§+1 + O‘s—lDtvg_l = 0. (449)

7j=1
Define by induction
J
1_ 1 s pdad] .2 ,
yj o Dtyj_l + Z (dl dz)]Jrl k s+] 2k> 1 S J S ng —§ — 1. (4410)
k=0

Let oj = 0 for j € Z\ {1,2,--- ,s}. We have the following lemmas, which are
proved afterwards.
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Lemma 4.4.3. y; (1 < j <ny — s — 1) satisfies the equation

s27J namsist2, j+1 . de+1 k
Dhy) + > anD; +Z ETNEE "D? =00 (44.11)

k=—o00

Remark 4.4.4. ZZ—%OZOC“ Dy*~ S’Lzu,,€ is a sum of finite terms, since for k < 0,
o = 0.

k
mas s pdadi2°7" o
Let Yeomp = Dtynz s—1 +Z (di—dg)m2—F1- kvng 2k

Lemma 4.4.5. y.omp satisfies the equation

no—s+1 a an s+1—k 25—2—ng
- s—k 2n2—2s5+2, 2
Dlycomp - - E (d d )n2 11 thUn2+1 2% E Oéth Uy,
k=1 L2 k=—oo0

+1—s mo+1—s
. Z Apyi1—kOsdy? w24 asdy? f
d2 no+1—s k (dl _ d2)n2+1—s

(4.4.12)

Lemma 4.4.6. For Ycomp, we have

Ycomp = (_dlA)ng_S—Flu%

no—s s no—s—k _k nQSklg
195 D SR (i SV ISRV

k=0 j=1 [=0

s mn2—2s+jng—s—k Oég—kd2dlf Ng — 8§ — k A ng—s—k—1, 2
. Z Z Z E , (—d2A) skt
(4.4.13)

Assume for the moment that these Lemmas are true and let us complete the
proof of Proposition 4.4.1. Define

no—s+1 o kan s+1—k 25—2—ng
_ z : s— 2n9—2s+2_ 2
h= (dy — dg)n2—st1= thUS‘H‘H 2k E: ay Dy Uy,
k=1 k=—o00
. ) (4.4.14)
d mo+1—s dn2+1 S

+ Apy+1—-k Qs u2+ gy f
2 : d2 not+l—s k (d1 _ d2)n2+1—s

Since
ui < CO([()? T]? Hgﬁ_l_k(AD)) A Cl([07 T]> Hsnzz_k(AD))>

we know that

D225 22 ¢ L1(0,T), HY(Ap)), k < 25 — 2 — ny,
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4.4. PROOF OF THE SUFFICIENT PART OF ?7?

which implies that F' € L'((0,T), H)(Ap)). Now, we remark that by (4.4.4) and
(4.4.5), Yeomp satisfies
ycomp|t:0 - ﬁO S Hglz(AD)y
atycomp‘t:l) = Ul € HS%(AD)

Consequently, from (4.4.12), (4.4.14) and the fact that F € L*((0,T), HY(Ap)),we
conclude that yeom, € C°([0,T1], Hy(Ap)) N CH([0, T, Hy(Ap)). O

It only remains to prove Lemma 4.4.3, Lemma 4.4.5 and Lemma 4.4.6.

Proof of Lemma 4.4.3 and Lemma 4.4.5. We prove these lemmas by induction.
For yj, according to (4.4.9), we know that y; satisfies (4.4.11) for j = 1. Assume
that for I < j, y; satisfies (4.4.11). Thus, using the definition of y/; and the equation
for y;_,, we know that y; satisfies the following equation

. ) T g pdadl "
Dhy; _DtmlyjflJrZ (dy — dy)it+1- levsﬂ 2k
k=0

o’ 2 g pdiF
no—s+j+2, 2 Z s—k%1 2,,2
= — oD uy — — DivZ .
t k (dl _dQ)']ik t Ys+j—2k

k=—o00 k=0

d v pdod) K o kd2dglek o
* Z — dg)it1= kaSﬂ 2+ Z — dy)i Ik (d2 — dy) Usj—2k-
=0

By simple observation, we know that

J as_kdjfk 2,2 Qg kd2d " 2
_ZWDt e 2I<:+Z ) ~(dy — di)Avg,
! Qs kd{_k 2,2 Qs kdl 2
= Z Wat stj—2k T Z W(_dQA)Us—&—j—%

J j—k
o as—kdl 2
B Z (dy — dy)i=F Vst

Therefore, we simplify the equation for yjl-,

s—1—j
Oyt = — g D 0 E + 1)0Ogv7,
t 2 —
7 . d2 j— k- dl d2 ) s+j—2k
=—00
s—1—j j—k+1
_ ng—s+j+2, 2 O‘s kdh 2
= E oD, T E ~d)i- k+1DZUs+j—2k-
k=—o00
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Using the equation Oyv2, ; o, = —Dyw2, |, 5 coming from (4.4.7), we obtain

s—1—j ) J a kdjkarl
1_ 2 : ne—s+j+2, 2 § s—k™1 2
1 2
k=—o00 k=0

Now we look at the term a,_,_;Dy* "2 | ;- If j <s—1, we obtain

2
045—1—an2 s+j+ u2

t slj_@51]Dtvslj’

if j >s—1, as_1—; = 0. Hence, we have

s—2—j Jj+1 j—k+1
1 _ ng—s+j+2 2 Qs kd
Dlyj = — E D, u; — E

D,v?
k tUstj—2k+1
(dy — dy)i—FH1 j—

k=—00

k=0

By induction, this implies that y;(1 < j < ny — s — 1) satisfies the equation

s—2—j j+1

ng—s+j Qs
Chy} + Y o D72y +Z (TS "Dw? iy =00 (4.4.15)
k=—00

d]-‘rl k

Using the definition of yeom,, We obtain

nz2—s no—s—k
as ded 2
|:|1ycomp DtDIyn2 s—1 T E d2)n2—s+1—k|:|1vn2*2k'

Following the same procedure, we have the following equation

2s—1—na2

na2—s o kdn2 s—k+1
2n 72s+2 5—
DhYeomp = — §: gDy Z — dy)ra—s—h+1
2

Oyv?

TL272]€'
k=—00

Using the equation [yv2, = 32 any11-xuj + f coming from (4.4.7), we obtain

2s—1—ng nz—s e dn2 s—k+1
Dlycomp Z Qg D2n2 2S+2 Z - d Na—s— k+1D TQLQ—Qk—l-I
k=—o00 2
Apyt1—kQsdy me2—stl 9 ozsal}“‘ryrl
+ Z d2 no—s+1 Uy (dl _ d2)n2—s+1 f

Now look at the term awgy_1_ n2D2"2 2542

28 1y If2$—1—n2 < 0, we know
that ass_1-n, = 0. Otherwise, we know that DQ”2 2542 25 lmy = Dtvgs_l_m_
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Consequently, we obtain the equation for yeomy:

ng—s+1 a an s+1—k 25—2—ngo
s—k 2ng—2s+2, 2
Uieomp = = Z (di — dg)r2=st1= thUanrl 2% Z D
k=1 L k=—00
N Z Oy 11Ol d 2+1—su2 N Oésd?ﬂ—l_s f
d2 no+1l—s k (dl _ dg)ng—i-l—s )
which is exactly the equation (4.4.12). O

Proof of Lemma 4.4.6. Recall the definition of Ycomyp,

na—s
5 Oés kdgdn2 s—k )
Yeomp = tyn2 —s—1 + E d2 no—s+1— kvnz 2k>

and the definition of yj(l <j<ng—s—1),

agpdadi "
Dty] 1+Z d2 1k s—l—] 2k-

Therefore, by iteration, we have the following expression for Yeom,

nz2—s .7 k.d d] k
) B
Yeomp = D245 + ) Z dls LD T2 o (4.4.16)
==
Using the definitions of y} = v] + d‘fidjz) v? and v} = Dyt u?, 1 < j < ny given

n (4.4.6), we simplify the formula above:

d2 jH+1—k t uS+j*2k'

na2—s .] d d —k
Y D2n2 2542, 1 ZZ Os— U2 D2n2—25=2j+2k, 2
comp —
=0 k=0

According to the equation Dfu1 = —d;Aul + Zj‘:1 ozjujz coming from (4.4.1), we
obtain

ycomp _ D2n2 28( dlAu%

na—s Jj

Qs kd2d1 2no—25—2j+2k 2
T Zozj T Z Z (dy — da)it1- P Di Wstj—2k
—

7=0 k=0

s

= (—=diA) D> "*u —I—ZaJD”Q “u?

na—s Jj

N Z Z g pdod) " 22242k, 2
dl d2 j+1—-k s+j—2k

]:0 k=0
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By iteration, we are able to obtain that

ng—s s

_ n s+1 1 2no—2s—2k_ 2
Yeomp = (_dl 2T + E E Oé] d1 Dt uj
k=0 j=1
na—s J j—k
N Qs dady 2025 -2j+2k, 2
(dl d2)j+1_k t s+j—2k"
=0 k=0

2

Now we introduce the following lemma to describe the term D7*u?.

Lemma 4.4.7. Let u? be solutions to the system (4.4.1). If k + j < ng, we have

D §:zk: (’;)( daN)'u? . (4.4.17)

=0

We shall prove this lemma in Appendix B. Now, we use this lemma to simplify
the formula of Yeomp. In the term Y772 " 37°  a;(—d1A)* Dpra—2s 2k u3, since j < s
and k£ > 0, we know that no — s — k+ 75 < ny — k < ng. Thus, accordlng to
Lemma 4.4.7, we obtain

no—s—k
ng—s—=k
Dt2n2—25—2ku§ _ Z ( 2 l )( d A)?’Lz s—k— lu§+l (4418)
1=0
J—k .
On the other hand, in the term > 72" > 7 %Df”r%‘%”kugﬂf%, since

k > 0, we know that (s +j — 2k) + (ne — s — j + k) = na — k < ny. Therefore,
according to Lemma 4.4.7, we obtain

no—s—j+k

2ng—2s—2j+2k 2 Z ng—s—j+k no—s—j+k—1. 2
D us+] 2k — ( I (_d2A) us—i—j—?k—i—l'

1=0
(4.4.19)
As a consequence, we obtain that

Yeomp = (—dlA)"THlu%

no—s s no—s—k
. Z Z Z a <TL2 k:) (—dlA)k(_dQA)nQ_S_k_lu?Jrl

k=0 j=1 [1=0

+71225in2 iﬂ‘f’k O{S_ded{_k N9 — S _]+ k ( d A)TLQ s—j+k—l 2
=0 k=0 (dy — dy)it1=F [ ety
Jj=
(4.4.20)
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For the last term in the formula above, since a,_; = 0 for £ > s, we know that
no—s j mno—s—j+k i—k .
Sy S e (M s
(dy — dy)it1=F l Ustj—2k-+1
j= =0

s—1 ng—sna—s—j+k

- asfdedjl'_k Ng — S _] + k d A)2—5— j+k—I 2
_Z Z @ — dyy % ] (—dyA) Ugy i 2k41

k=0 j=k  1=0

s mn2—2s+jng—s—k
Jna— ajdzdlf Ng — S — k ( d A)nQ s—k—1 2
(dl _ d2)k+1 l ]+k+l

F||1

j=1 k=0 =0

The last equality holds after a change of the sum index. Therefore, we obtain the
form for yeom,

Yecomp = (_dl A)n2_s+1u%

no—s s nas—s—k
+ZZ Z (Ij(nQ_lS_k)(—dlA) ( —d A)nz s—k—1 ?-ﬁ-l

k=0 j=1 1=0 (4421)
s m2—2s+jnog—s—k
aJdel ng—s—k na—s—k—1, 2
DD MBI+ (RS
j=1 k=0
0

We also have the similar theorem as we proved in the previous section:
Theorem 4.4.8. Given T > 0, suppose that:

1. (w,T,pg,) satisfies GCC, i =1,2.

2. Q has no infinite order of tangential contact with the boundary.
Then System (4.4.1) is exactly controllable in Hj X H.

As before, proving Theorem 4.4.8 is equivalent to proving the exact controlla-
bility of the following system:

( asd2 0 .
Dlv% + R(’U%’ R 71}7212) Wflw m (O, T) X Q,
Oovf + D3 =0 in (0,7T) x Q,

= ey S0, 0l,) = Sl in <(0 T)>>< Q,

U*Ov— = =0 on x S, ,
(11)%7”%7"1' , U )|t 0 €$n2+1

| (Dwl, 0%, -+, 02 im0 € L5,

(4.4.22)
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with
s kdn2 s+1—k

no—s+1
R(’U2"' 1}2>—_ E DU
1> y Yn t s+7+1-2k
2 p (dl d2>n2 s+1—k J

25—2—ng

22542 o—1/, 2 2
+ E ap D™ Sy (v, vz)

n2

k=—o00

ma+1—s
_|_ ang—l—l kasd 8_1(’(}2 o UQ )
— dg)n2tl=s k \"k» » Yng /e

Here we use the transform S given by

Uy vy
ui vf
S| . = ,
2 2
unz UTLQ
where
1
Ul ycomp
2 no—1
Dt
(4.4.23)
2 .2
Un2 = unQ,
with

Ycomp = (_dlA)n2_5+lui

no—s s ng—s—k
—k no—s—k—
i Z Z Z ( )<_d1A)k(_d2A) ST
k=0 j=1 =

s ng2—2s+jng—s—k

aJdQ n2_8—k no—s—k—1_ 2
+]Zl Z Z (dy — d2k+1( I )( dxA) Wyl

Remark that Proposition 4.3.2 together with (4.4.23) ensures that
(o1, 0%, .. vn,) € CO[0, T, 27 ) N CH([0, T], 5.

We use S~! to denote the inverse transform given by

r ui :Soii(vi,?}%, Q,Uiz)
ui = Sy (vi,- 7Un2);
s _ g o< i< X (4.4.24)
U’ng—j ] (Ung YR )7 J ng —
| w2 =S71(2) =02
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Then, we treat exactly the same way as we did in the proof of Proposition 4.3.2
to obtain the form of the inverse transform of §. There are two different cases.
For ny, = 2k 4+ 1, which is an odd integer, we are able to obtain that

( u%k+1 = U§k+17
ud = (—doAp) ' Dyl + T(2k, 2k + 1)(—daAp) 03,1,
q (4.4.25)
w2 = (=doAp) 02+ T(1,2)(—doAp) " D2 -
\ +T(1, 2k + 1) (—doAp) 02, .

It is similar for the even integer ny = 2k:

2 .2
Ugg = Vo>

u,_ | = (—doAp) D3, | + T(2k — 1,2k)(—dyAp) 03,

w2 = (=dyAp) "Dp? + T(1,2)(—=dyAp) 2o+ T(1,2k)(—dyAp)' 0,
(4.4.26)
Here the coefficients {T'(4, j) }1<i<j<n are uniquely determined by System (4.4.1),
but their exact value is not really important.

Remark 4.4.9. As explained in Remark 4.3.3, we are able to rewrite the system
(4.4.22) as follows:

(2 — SDS™'A + SAS™H)V = Sbf,

and we have

n 1-s
a5d12+

A O’
Sbf = :
0,

Moreover, we could notice that both S and S~' only involve D; and (—Ap)*, k € Z.

According to the Hilbert Uniqueness Method, we only need to prove the ob-
servability inequality

2

asdn2+1 s ) ) 2

d1 d2 na+1—s
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for any solution of the adjoint system:

( Ow! =0 in(0,T) %9,
Dgw% + A1’UJ7212 + Alw% =0 1in (O,T) X Q,
Oyw3 + Dyw? + Agw?, + Aow] =0 in(0,7)xQ,

(4.4.28)

Oow?, + Dyw?, ) + Ap,w?, + Apywl =0 in (0,7) x Q,
wi =0,w} =+ = w2, =0 on (0,T) x 09,

\
with initial conditions

(U}%, w%? T 7w7212)‘t=0 € ( 2(Q>>n2+1 = "%nﬁ_l

(Opwy, Oy, -+ Oy, )0 € (Hg ' (Ap))™T = R ans

where the operators (A;)1<j<n, and (A;)i<j<n, are uniquely determined by the
transform (4.4.23) and additionally are bounded operators in L*(Q). As usual, we
divide the proof of the observability inequality (4.4.27) into two steps.

Remark 4.4.10. We are able to rewrite the adjoint system (4.4.28) as follows
(07 = (8")'DS'A+ (S)TASYW =0

Here the transform 8’ denotes the invertible transform between the adjoint systems.
Moreover, we could notice that both 8’ and (S')™! only involve Dy and (—Ap)*, k €
Z.

Step 1: establish a relaxed observability inequality.

First, we can establish a relaxed observability inequality for the adjoint System
(4.4.28).

Proposition 4.4.11. For solutions of System (4.4.28), there exists a constant
C > 0 such that

WOt gnass

<c(

Proof. We argue by contradiction. Suppose that the observability inequality (4.4.29)
is not satisfied. Thus, there exists a sequence (W*).en the solutions of System

2

(4.4.29)
wy +wz | dxdt + ||[W(0 )H2 ng 1, gnatt | -

asdanrl S

dl d2 no+1—s
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(4.4.28) such that

||W'“( Mignasi gmars = 1, (4.4.30)
o dn2+1 s 2
d : ) wy + wiF| dxdt — 0 as k — oo, (4.4.31)
1 — dg)n2tl=s
HWk O[3 g1, g — 0 s k — oo, (4.4.32)

By the continuity of the solution with respect to the initial data of System (4.3.27),
we know that the sequence (W*),cn is bounded in (L2((0,7T) x ©))"2*! and more-
over, W* — 0'in (L?((0,T) x ©))">™!. We have W* satisfying the following system

Dw%,k — 0(1)H51(AD) in (0,7) x €,
Dw%”"’ I th%,k _ 0(1)H51(AD) in (0,7) x €, (4.4.33)

\

Hence, we obtain two microlocal defect measures K, € M and K, € M asso-
ciated with (w}’ )keN and (W?2F),cn respectively. From the definition in Proposi-
tion 4.2.6, we know that

VAEA  (u,0(A) = lim (Aw;", w) e,

k—o00

(11, (i, §), 0 (A)) = lim (Aw?* wi*)2, 1 <d,j < 2.

k—o0 J

Here p, = (p,(i,7))1<ij<n, is the matrix measure associated with the sequence

2,k 1k 2k . :
(W2F)pen = (wi™, -+, wZF)ren and moreover, wy™ and w;™ is the extension by

0 across the boundary of (1 <7 < ny). As we already presented in the Subsec-
tion 4.3.2, the two measures are mutually singular in (0,7") x €. Then provided
with

dn2+1 s 2
(dr — do)m2t1—s wy® + wi’f dxdt — 0 as k — oo,
we obtain that for X € C&((0,T) x w)
Oésd?erlfs " dn2+1 s

(dl _ d2>n2+1—sz1 ! (d dz)n2+1 sz1 > - 07
{(xw if,xwm ) —0, ask— oo
Thus, we know that

ﬁll(O,T)Xw =0, and EQ(nm n2>|(0,T)><w = 0. (4.4.34)
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For p1 , since p is invariant along the along the general bicharacteristics of pa,,
comblnmg with GCC, we know that p = 0. For p , we consider the other defini-
tion of the microlocal defect measure. From Proposmon 4.2.8, we know that there
exists a measure s € M™ such that

VA€ A, (ug, k(c(A))) = lim (AW>F W) . (4.4.35)

k—o0

Here 1o = (p2(2, j))1<i j<n, 1S a matrix measure. Since p, [char(py,) = H2 H2-almost
surely, we obtain that pa(n2,n2)|01xw = 0. As we already presented in the
Subsection 4.3.2, we would like to use Lemma 4.2.10. So we adapt this lemma
under our setting here.

Lemma 4.4.12. Assume that ps is the corresponding microlocal defect measure

defined by

VAe A, (2, k(0(A))) = Jim (AW2F W2R) 5. (4.4.36)
for the sequence Wk = (w% B LW k)keN which satisfies the following system:
Dw?* =o(Dpyz1a,) i (0,T) x €,
ng’k + Dt = oV p-1ap)  wn (0,T) x &, (4.4.37)
Dw“ + Dt =o(1) @y M (0,T)xQ

If we denote the general bicharacteristic by s — ~y(s), then along v(s) there exists
a continuous function s — M(s) such that M satisfies the differential equation:

dils(M(s)) — iB(r)M(s), M(0) = Id,

and o 1s mvariant along the flow associated with M, which means that

d

d
0O = 0 O
Here we denote by E(T) the matriz 0
00 0

Remark 4.4.13. For the differential equation satisfied by M and the form of the
matriz E, one can refer to [15, Section 3.2] for more details.
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(iTs)m2—1

1 irs (na—1)!
Here, M has the form of 0 1 , wWhere 7 is a nonzero
co . T TS
0 --- 0 1
constant along the generalized bicharacteristic.
1 0
Let e; = s en, = O be the canonical basis for R"2. For any
0 1

point py € supp(pz), by the geometric control condition (GCC), we know that there
exists a unique general bicharacteristic s — 7(s) such that v(0) = po. Moreover,
there exists € > 0, sufficiently small, such that y((—2¢,2¢)) C 7 1((0,7) x w).
Since p1» is invariant along the flow associated with M, i.e. 2 (M*pusM) = 0, we
obtain that for any t, € (0,2¢), we have

p2(0) = M (to)" pa(to) M (to).

Noticing that supp(p2)(na,n2) N 7 1((0,7) x w) = @ (which also implies that
pa(to)en, = 0 by an already developed argument), we obtain that

M (—to)" p2(0) M (—to)en, = pia(to)en, = 0.

Hence, po(0)M(—to)en, = 0. Moreover, considering n — 1 times tq,...¢,—1 such
that tg <ty < ... <t,_1 <&, the same argument leads to

p2(0)M(—to)e,, =0,
p2(0)M(—t1)en, =0,
{ m2(0)M(=t2)en, =0, (4.4.38)

1a(0) M (—t 1)en, = 0.

From the expression of M, we obtain that {M(—t;)en, }icjon—1y is a basis of R"
(its determinant is proportional to the Vandermonde determinant [],_;(—t; +¢;)).
Hence, (4.4.38) implies that ps(0) = 0. According to the arbitrary choice of
po € supp(usz), we are able to conclude that supp(ps) = 0, i.e. pus = 0. Then,
we conclude that the relaxed observability inequality (4.4.29) holds for all the
solutions of System (4.4.28). O
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Step 2: analysis on the invisible solutions

We first define for any 7' > 0 the set of invisible solutions from |0, T'[xw
%2 (T) = {W = (w}’(J? w%ov e 7w721;07 w%,lv w%la e 7w721721)t € "%OnQJrl X gflfrl
such that the associated solution of System (4.4.28)
mo+1—s

satisfes - dlo‘j CIZQ)WH w2, t) +w?, (x,t) = 0,¥(x, 1) € (0,T) X w}.

With the relaxed observability inequality of (4.4.29), we only need to prove the
following key lemma:

Lemma 4.4.14. 4,,(T) = {0}.

Proof of Lemma 4.4.14. According to the relaxed observability inequality (4.4.29),
for W € A,,(T), we obtain that

||W(0)||;gl2+1x gt S C||W(0)||;f%+lx e (4.4.39)

We know that A, (T') is a closed subspace of £ x "%, By the compact em-
bedding L*(Q)x H1(Q) — HY(Q)x H~%(Q), we know that A, (T') has a finite di-
mension. Then, we define the operator .7,, to be the generator associated with Sys-
tem (4.4.28). We know that the solution (w{, wi, - -+ ,w2,, Dywy, Dyw3, - - -, Dywsy?)!
can be written as

wy
wi
2
wng — —t.oy,
D! e Iy
th%
th?%Q
It suffices to prove a unique continuation property for eigenfunctions of the op-
erator %2, Let us take ® = (CI)O’Cbl) = ( (1)7 T 9LQ+17¢%’ T 7¢7112+1) € %2(1—‘)7
satisfying
Ay, @ = AP, (4.4.40)
d2 . 4.
m(b(f + 92522_,_1 =0in w.
Then, it is equivalent to a the system
—DA A* = \2
(=DAp +A%)p 4 (4.4.41)
b plw = 0.
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Indeed, as explained in Remark 4.3.13, ® and ¢ verify the relation ¢ = (A, A)®
(where we replace formally D; by A\). The study of (4.4.41) is totally similar to
the one of (4.3.57): using the analyticity, we know that l;* = 0. Then, we obtain
that b*(—DAp + A*)k¢ = 0, for any k € N, i.e. p € Ker( *) = {0} , so that
¢ = 0, which concludes our proof. O

4.4.2 Reformulation of the system in the general case

According to Proposition 4.1.8, we already know that the operator Kalman rank
condition is necessary for the exact controllability of System (4.1.1). In this section,
provided with the operator Kalman rank condition Ker(KX*) = {0}, we plan to
give a reformulation of System (4.1.1).

As a consequence of Proposition 4.1.6, we know that (Ag, B) satisfies Kalman
rank condition. Therefore, applying Theorem 4.3.1, there exists an invertible ma-
trix P such that we reformulate System (4.1.1) into the following system

(0,4l +Z21&” —0 in (0,7) x Q,
D2u1 + a3 =0 in (0,7) x €,

Oy, + a2, = 0in (0,T) x €,

DQ&?LQ — ;Lil an2+1_jﬂ? = flw n (O,T) X Q,
al=0,a2 = -2, = on (0,T) x 99,
(ﬂ%,ﬂ%,--- aﬂi2)|t:0 (1&07@?07”. ,ﬂg&o) in Q7
| (0, 02, -+, 02 ) |i=o = (ayh, @y, azl)  in Q,
(4.4.42)
where @l = wu!, Uy = PU, and (41,---,d,) = (o, -+ ,a,)P~'. Define s =

max{l < j < ng;a; # 0}. From Proposition 4.4.1, the appropriate state space
for (4.4.42) is ‘Hj x H. Moreover, by Theorem 4.4.8, under our hypotheses, we
have exact controllability of System (4.4.42) in the state space Hj x H. This
immediately leads to the conclusion of Theorem 4.1.16.

4.5 Some comments

As we can see, the system (4.1.2) is only an example of a more general system as
follows:

(02 — DAp)U + AU = bf1lop(t)1,(z) in (0,T) x Q,
U 0 n (0,7) x 9, (4.5.1)
(U, 8tU)|t:0 = (UO,Ul) n Q,
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with here
diI1d, 0 A Ap
D = ! A=
( 0 d2ldn2 )nxn ’ ( A21 A22 )nxn ’

) ; fi (4.5.2)
= ( bl ) , and f =
2 nxm

where n = ny + ny and f; € L*((0,T) x w),j = 1,2,--- ,m. In this very general
system (4.5.1), there are three different kinds of effective parts acting on the con-
trollability problem, that is, control functions and two different types of coupling.

f

mx1

The first part is obviously the control functions. The more control functions we
have, the more sophisticated structure we demand for the coupled matrix to obtain
the controllability. It is very related to the Brunovsky Normal Form and when we
consider more than one control function, the standard Brunovsky Normal Form
has more than one block in the coupling matrix, which increases the complicity
of the calculation to obtain an explicit formula of the compatibility conditions (as
we have seen, for instance, in (4.1.8)). However, when we deal with the case with
more than one control functions, we usually rely on the Brunovsky Normal Form
to put the coupling matrix into the standard form and then, deal with the problem
block by block. This means that we first need to establish the result with only
one block, i.e. with only one control function. In the system (4.1.2), we choose
that b only acts on the second part of the system. The reason is that if we give
both parts the effective control function, we cannot observe the influence of the
coupling term because of the regularity.

The second part we considered is the coupling with the same speed, which
corresponds to Ay; and Ay, and on the other hand, the third part is the coupling
effects of the different speeds, which corresponds to A, and As;. As we can see in
the proof of the Theorem 4.1.16, coupling with same speed, we are able to observe
a phenomena of regularity increase by one with successive solutions. While we can
prove that the regularity gap between two coupled solutions with different speeds
is two (one can see in Subsection 4.2.2). This difference gives us the motivation
to consider that the simplest example of coupled wave system containing the two
different coupling effects, i.e. the system (4.1.2). We try to use this example to
analyse the different influence of these two types of coupling terms. When one
A Ap
Ag1 Ag
analyse the two different types of coupling. Because they are combined too closely,
it is difficult to separate them. From a technical point of view, it seems very hard
to derive an appropriate normal form similar to Brunovsky form to obtain the
compatibility conditions and the appropriate state space.

introduces the fully coupling matrix A = ( ) , it is complicated to
nxn
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4.6 Appendix I: On the operator Kalman rank con-
dition

Proof of Proposition 4.1.6. Let A € o(—Ap) and K(A) = [(AD+A)[b] € M,(R)
(remind that b = *(0,b) € R™). Firstly, we compute the form of the matrix AC(\)
by induction.

Spt(A) e SN e Ab 0

The general term S;(A), 1 <j <n —1is defined by

S;(\) = Ay <jz dE N (do ) + Az)j1k> b. (4.6.2)

k=0

Since the rank of a matrix is invariant under elementary operations on the columns

(that we will shorten in column transformation in what follows), it is easy to see
that rank(IC(N\)) = rank(IC(N)), where

- _ gnfl()\) gj@) ce A0
’CW_( Ay oAb oo Agh b (463)
with
~ J_l .
S;(\) = A, <Z(d1 - dg)k)\kAJQ_l_k> b. (4.6.4)
k=0

Let us first prove the necessity of the conditions. Suppose that n; > 1 and
let us prove that the Kalman matrix K (\) is not of full rank. We take the n;-th

column of the matrix K()), i.e.
Sia(N)
AL )

Let x(X) = X" + 2?201 a; X7 be the characteristic polynomlal of the matrix As.
By the Cayley-Hamilton Theorem, A5* = 2?201 a; A
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By using an adequate column transformation, we can put the ni-th column

into the form
( Tea) ) | (4.6.5)

where T,,(A) = Sy, (M) + 3727 a;5;(A). By (4.6.4),

no—1 na—1 1
> a;8 Z a; Ay <jz dg)k/\’“Ag‘l"“> b
7j=1

k=0
no—2 no—1

=4 <Z > ay(di - @)UM;’“) b.
k=0 j=k+1

Using the expression of S,,()\) given in (4.6.4), we obtain that

no—1

Th,(A) = )+ Zaj
ng—1 ‘ na—2 no—1 |
= (Z (v — d2>’“A’“A%‘1"“> b+ A (Z > ay(di - dQ)k)\kA%_l_k> b

k=0 k=0 j=k+1
n2—2 ng—1 4

= Al (Z(dl _ d2)k)\k (A’ém—l—k + Z CLJAélk> + (dl . d2>n21>\n21> b,
k=0 j=k+1

1.e.

2 n2
To,(N\) = 44 ( (dy — do)* N > 0 ATF 4 (dy — dQ)"NWl) b. (4.6.6)

k=0 j=k+1

Here and hereafter, we use the notation a,, = 1 in order to obtain a clean from.
Now, we take the (n; — 1)—th column of the matrix KC(A), i.e.

S’m-l-l()‘)
A;”Hb
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Again using the characteristic polynomial of the matrix As, we obtain that
no—1

no+1 J
A2 = —A2 E Cleg
J=0

no—2
_ E AL n2
J=0

no—2 no—1
— § J+1 § J
= — ajA2 + Apoy—1 ajA2
j=0 J=0

no—1
_ j
= D _(ajan,—1 — a; 1) A3 + any—100.
1

J

By applying an adequate column transformation, we can put the (n; — 1)-th

column into the form:
Tn2+1 ()‘)
O b
no—1

Tn2+1()‘) = Sn2+1(/\) - Z (ajanz—l - aj—l)gj(A)

where T,,,.1()\) satisfies

j=1
= A (Z(dl — dz)k)\kAg,Q_k> b
k=0
na—1 i1 |
_ Z(ajanz—l - aj—l)Al (Z(dl . dQ)k)\kAélk> b
= k=0
ng
= A (Z(dl — dz)kAkA§2k> b
k=0
n2—2 nz—1 |
— Al (Z Z (ajang—l - aj_l)(dl — d2)k)\kA%_1_k> b
k=0 j=k+1

ng—2

= A (Z (dy — do)" N AL 4 (dy — do)™A™ + (dy — dg)”Ql)\"21A2> b
ng—2 ngo—1 '

+ A1 <Z aj,l(dl — dg)k)\kAéilik

S a;(dy — dQ)kA’ng—l—k> b.
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Now consider the sum

no—2 no—2 nao—1

S (i — do) A AR 3T ST i (dy — o)A

k=0 k=0 j=k+1

no—2 no—1 . no—1 '
=Y " (di — dy)" N (A;M + ) aj_lA;—l—k> + AP+ Y aa AT

k=1 j=k+1 j=1

no—2 no+1 no—1 '
_Zdl dy)* (Zaj 1A31’“>—ZajA§

j=k+1 j=0

no—1 - no—2
+ 3 ai AT =Y (dy — do) N, ARTR

j = k=1

no—2 no+1 no—1
_Zdl dz"“A’“(ZaJ 1A]1k>—2ajAg
§=0

Jj=k+1
no—1 no—2
j—1 kyk no—1—k
+ E aj_lAz - E (dl — dg) A an2_1A22
j=1 k=1
ng—2 no+1
o j—1-—kK na—1
= E (dl d2 E Qj— 1A —an2,1A22
no—2
§ kyvk pgno—1—k
—Cbn2 1 (d1 dg) /\ A22
k=1

n2—2 na+1 ng—2
=N " (dy — do)F N ( > a4 k) — anym1 Y (dy — da)P N AT,

j=k+1 k=0
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Therefore, we obtain

no—2 na+1
Tn2+1()\) = Al (Z(dl — dg)k)\k Z aj_lAJQ_l_k> b

k=1 j=k+1
no—2
+ Al <_an2—1 Z(dl . dQ)k/\kAgz—l—k + (dl N d2)n2/\n2
k=0

ng—2 ng—1
+(d1 - d2)n2—1)\n2—1A2) b + Al (—an2_1 Z Z aj(dl _ dQ)k)\kA‘;_l_k) b

k=0 j=k+1

n2—2 na+1
= A (Z (d1 - dg)kAk Z aj_lA]zflfk + (dl _ d2>n2/\n2> b

k=1 j=k+1
ng—2 ng
o <(d1 — o) TN Ay — a1 Y Y a(di — d2)k)\kz4%_l_k> b.
k=0 j=k+1

Then, we aim to find a connection between the terms T),,.1()\) and T,,,(\). By
calculation, we obtain

no—2 n2
(dy — do) T, (N) = Ay (Z(dl _ d2)k+1>\k+1 Z ajA%'—l—k +(dy — d2)n2>\n2) B
k=0 Jj=k+1
no—2 ng '
= A, (Z (dy — do)* N> " a; ALTF + (dy - dg)”2>\”2> B
k=1 j=k

4 (dy — dy)™ A A Ay B

ne—2 no
= Topt1(AN) + A <an2—1 Z Z a;(d — d?)k)\kAJQ_l_k> B

k=0 j=k+1
= Lnp41 (/\) + anz—le(/\)'

Hence, we know that T),,.1(\) = ((dy — d2)A — an,—1) Ty, (A), which means that

the two columns 0 0
Tn2 TTL2+1
(V) ma ()

are linearly dependent. This means that

Sy (A Snat1 (A
(%) o (%))
are linearly dependent. By the expression of K()\) given in (4.6.3) and the definition
of S; given in (4.6.4), we deduce that all the j-th columns of IC()\), for j < nq,
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are linearly dependent. We deduce that K()\) is of rank less that n —ny +1 =
ne + 1. This is in contradiction with the fact that K(\) € M,,(R) is of full rank
n = ny + ny > ng + 1 since we assumed that n; > 1. So we deduce that n; = 1.

Concerning the two other conditions, remark that the first column of K (A\) can
be changed by a previously introduced column transformation into (4.6.5), where
T,, () verifies (4.6.6). We deduce that the rank of K ()) is equal to the rank of

the matrix

Ty(A) Sng1(N) -+ Sj(A) -+ Apb 0
0 APt AT e Agh b )

This matrix is of full rank n = ny + 1 (if and) only if 7,,,(\) # 0 (which gives
(4.1.4) thanks to (4.6.6)) and

(Angl Agflb AQb b)ean,Tm(R)

is of full rank ny, which is exactly meaning that (As,b) verifies the usual Kalman
rank condition.

The sufficiency of the three conditions given in Proposition 4.1.6 is also straight-
forward, by the same arguments.

4.7 Appendix II: Proof of Lemma 4.4.7

We first look at uiQ. Since j+k < no, we know for j = nsy, the conclusion is trivial.
For 1 < j < ns — 1, we argue by induction. When k£ = 0, the conclusion holds for
sure. Assume that

N
—_

_ k—1
Dl = ( l )(—dzA)lu§+kll. (4.7.1)
l

Il
=)

Then for Dt%uf, we know that
D}*u} = Dy D{**u}
k-1
kE—1
= Z < I >(_d2A)lD§u§+kll'
1=0
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4.7. APPENDIX II: PROOF OF 7?7

Using the equation Dfu? ;| , = —doAu? |, +uj,,_;, we obtain that
— (k-1
- )2
(l )(dA+j+k1z+§ ( ) A gy
0

(l;: 11 ) (—da )l + kf < ; 1) (—daA) il (4.7.3)

=0

E

2k, 2
Di"uj
]

W

o~

o
—_

Z((’;: 11> + (k ; 1))(—d2A)lu§+kl + (—do A2+ ud .

=1

Since ((¥2)) + (*7")) = (}), we obtain the conclusion.
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