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Résumé

Dans cette thèse, nous étudions les théories étroitement liées du contrôle et les
propriétés de la continuation unique, pour des équations et systèmes des ondes
linéaires. Les résultats principaux proviennent des travaux de l’auteur:

1. Jingrui Niu. Simultaneous Control of Wave Systems. SIAM J. Control
Optim., 59(3):2381–2409, 2021

2. Pierre Lissy and Jingrui Niu. Controllability of a coupled wave system with
a single control and different speeds. preprint, 2021

Dans (1), nous avons étudié la contrôlabilité simultanée des systèmes des ondes
dans un domaine ouvert de Rd. Nous obtenons un résultat de contrôlabilité partielle
sur un espace co-dimensionnel fini pour des équations d’onde couplées par une
seule fonction de contrôle. Pour la propriété de continuation unique des fonctions
propres, nous avons donné un contre-exemple pour montrer que dans certaines
métriques, la propriété de continuation unique n’est pas vraie. De plus, nous avons
étudié différentes conditions pour garantir la propriété de continuation unique.
Nous avons étudié également notre résultat au cas de coefficients constants et
éventuellement de fonctions de contrôle multiples. Dans ce contexte, nous avons
prouvé que la propriété de contrôlabilité est équivalente à une condition de rang
de Kalman appropriée.

Dans (2), nous avons étudié un problème de contrôlabilité exact dans un do-
maine ouvert Ω de Rd, pour un système des ondes couplées, avec des vitesses
différentes et une seule commande agissant sur une sous-ensemble ouvert ω satis-
faisant la condition de contrôle géométrique et sur une seule vitesse. Les actions
pour les équations des ondes avec la deuxième vitesse sont obtenues par un terme
de couplage. Tout d’abord, nous construisons des espaces d’états appropriés avec
des conditions de compatibilité associées à la structure de couplage. Deuxième-
ment, dans ces espaces bien préparés, nous prouvons que le système des ondes
couplées est exactement contrôlable si et seulement si la structure de couplage
satisfait à une condition de rang de Kalman de l’opérateur.
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Chapter 1

Introduction(français)

1.1 Motivation

La contrôlabilité des équations d’onde est un sujet de recherche classique dans la
théorie du contrôle et dans l’analyse des équations aux dérivées partielles. Il existe
une grande littérature sur la contrôlabilité des équations des ondes linéaires. L’un
des meilleurs résultats sur ce sujet a été obtenu par Bardos, Lebeau et Rauch
dans leur article [10], où ils ont introduit la condition de contrôle géométrique et
présenté l’application de l’analyse microlocale au sujet. On peut aussi se référer à
l’article [14] de Burq et Gérard et à l’article [12] de Burq pour des améliorations
ou des démonstrations plus simples. Ces résultats forment un contexte de base et
fournissent également la stratégie principale pour nous d’étudier la contrôlabilité
des équations des ondes.

Comme nous pouvons le voir, pour une équation des ondes scalaire, la contrôla-
bilité exacte est bien connue. Il existe une large littérature sur la contrôlabilité
d’une équation des ondes scalaire à travers différentes approches telles que [10]
en utilisant l’analyse microlocale comme nous l’avons mentionné précédemment,
[38, 29] en utilisant des multiplicateurs, [25, 11] en utilisant des estimations de
Carleman, ou une preuve complètement constructive [30], etc.

Bien que nous ayons maintenant une meilleure compréhension de la contrôlabil-
ité d’une équation des ondes scalaire, la contrôlabilité des systèmes des ondes n’est
toujours pas totalement comprise. A notre connaissance, la plupart des références
concernent le cas de systèmes avec le même symbole principal. Alabau-Boussouira
et Léautaud [5] ont étudié la contrôlabilité indirecte de deux équations des ondes
couplées, dans lesquelles leur résultat de contrôlabilité a été établi en utilisant
une méthode d’énergie multi-niveaux introduite dans [2], et également utilisé dans
[3, 4]. Liard et Lissy [37], Lissy et Zuazua [40] ont étudié l’observabilité et la
contrôlabilité des systèmes des ondes couplées sous la condition de rang de type
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1.2. GÉNÉRALITÉS

Kalman. De plus, nous pouvons trouver d’autres résultats de contrôlabilité pour
les systèmes des ondes couplées, par exemple, Cui, Laurent et Wang [19] ont
étudié l’observabilité des équations d’onde couplées par des termes d’ordre zéro ou
du premier ordre sur une variété compacte. Cependant, lorsque l’on considère la
contrôlabilité du système des ondes couplée à des vitesses différentes, il y a très
peu de résultats.

Par contre, compte tenu de la contrôlabilité d’un système parabolique, nous
constatons qu’il n’y a pas de différences entre le couplage avec la même vitesse
et des vitesses différentes (par exemple, voir [6]). Cela nous motive également à
étudier les résultats sur la contrôlabilité du système des ondes à différentes vitesses.

Dans cette thèse, le principal modal étudié est l’équation d’onde sous la forme
suivante. Soit Ω ⊂ Rd, d ∈ N∗, un domaine borné et lisse. Pour les constantes
positives α et β, soit kij(x) : Ω→ R, 1 ≤ i, j ≤ d des fonctions lisses qui satisfont:

kij(x) = kji(x), α|ξ|2 ≤
∑

1≤i,j≤d

kij(x)ξiξj ≤ β|ξ|2,∀x ∈ Ω,∀ξ ∈ Rd. (1.1.1)

Supposons K(x) est la matrice symétrique définie positive des coefficients kij(x).
De plus, nous définissons la fonction de densité κ(x) = 1√

det(K(x))
. On définit égale-

ment le Laplacien par ∆K = 1
κ(x)

div(κ(x)K∇·) sur Ω et l’opérateur d’Alembert
�K = ∂2

t −∆K sur Rt × Ω. Nous considérons une équation d’onde non homogène
avec un terme source f :

�Ku = f, (1.1.2)

avec conditions initiales:

u|t=0 = u0, ∂tu|t=0 = u1. (1.1.3)

1.2 Généralités

Dans cette section, nous présenterons quelques aspects de base du problème de
contrôle des équations d’onde. Nous supposons que ω est un sous-ensemble ouvert
de Ω. Nous considérons le problème de contrôlabilité intérieure pour l’équation
des ondes suivante: 

�Ku = f1ω dans ]0, T [×Ω,
u = 0 sur ]0, T [×∂Ω,
u|t=0 = u0(x), ∂tu|t=0 = u1(x),

(1.2.1)

òu f est une fonction de contrôle avec son support localisée dans le sous-domaine
ω.
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CHAPTER 1. INTRODUCTION(FRANÇAIS)

Il est bien connu que l’équation d’onde modélise de nombreux phénomènes
physiques tels que les petites vibrations des corps élastiques et la propagation du
son. Par exemple, (1.2.1) fournit une bonne approximation pour les vibrations
de faible amplitude d’une corde élastique ou d’une membrane flexible occupant la
région Ω au repos. La commande f représente alors une force localisée agissant
sur la structure vibrante.

De plus, puisque l’équation d’onde est l’équation hyperbolique la plus perti-
nente. Par l’étude de l’équation d’onde, il nous aide à comprendre comment les
propriétés des équations hyperboliques agissent sur les problèmes de contrôle.

Il est donc intéressant et important d’étudier la contrôlabilité de l’équation
d’onde comme l’un des modèles fondamentaux de la mécanique du continuum et,
en même temps, comme l’une des équations les plus représentatives de la théorie
du contrôle des équations aux dérivées partielles.

1.2.1 Contrôlabilité

Dans cette section, nous présenterons plusieurs types différents de contrôlabilité
pour l’équation d’onde (1.2.1).

Définition 1.2.1 (Contrôlabilité). Let T > 0.

1. (Contrôlabilité exacte) On dit que l’équation d’onde (1.2.1) est exactement
contrôlable dans H1

0×L2 au temps T si pour toutes données initiales (u0, u1) ∈
H1

0 × L2 et toutes données cibles (ũ0, ũ1) ∈ H1
0 × L2, il existe un contrôle

f ∈ L2(]0, T [×ω) tel que la solution de (1.2.1) avec les données initiales
(u|t=0, ∂tu|t=0) = (u0, u1), satisfait (u|t=T , ∂tu|t=T ) = (ũ0, ũ1).

2. (Contrôlabilité à zéro) On dit que l’équation d’onde (1.2.1) est contrôlable à
zéro dans H1

0×L2 au temps T si pour toutes données initiales (u0, u1) ∈ H1
0×

L2, il existe un contrôle f ∈ L2(]0, T [×ω) tel que la solution de (1.2.1) avec
les données initiales (u|t=0, ∂tu|t=0) = (u0, u1), satisfait (u|t=T , ∂tu|t=T ) =
(0, 0).

3. (Contrôlabilité à partir de zéro) On dit que l’équation d’onde (1.2.1) est con-
trôlable à partir de zéro dans H1

0 × L2 au temps T si pour toutes données
cibles (ũ0, ũ1) ∈ H1

0 × L2, il existe un contrôle f ∈ L2(]0, T [×ω) tel que la
solution de (1.2.1) avec les données initiales (u|t=0, ∂tu|t=0) = (0, 0), satisfait
(u|t=T , ∂tu|t=T ) = (ũ0, ũ1).

4. (Contrôlabilité partielle) Soit Π un opérateur de projection défini dans H1
0 ×

L2. On dit que l’équation d’onde (1.2.1) est Π−exactement contrôlable dans
H1

0 × L2 au temps T si pour toutes données initiales (u0, u1) ∈ H1
0 × L2 et

9



1.2. GÉNÉRALITÉS

toutes données cibles (ũ0, ũ1) ∈ H1
0×L2, il existe un contrôle f ∈ L2(]0, T [×ω)

tel que la solution de (1.2.1) avec les données initiales (u|t=0, ∂tu|t=0) =
(u0, u1), satisfait Π(u|t=T , ∂tu|t=T ) = Π(ũ0, ũ1).

Remarque 1.2.2. En particulier, parce que l’équation d’onde est linéaire et réversible,
la contrôlabilité exacte, la contrôlabilité à zéro et la contrôlabilité à partir de zéro
sont équivalent (voir [17, Theorem 2.41]).

1.2.2 Condition de Kalman

Dans cette section, nous rappelons quelques conditions de rang de Kalman intro-
duites dans la littérature des systèmes paraboliques couplés. Tout d’abord, nous
rappelons la condition de rang de Kalman pour la contrôlabilité des équations
différentielles ordinaires autonomes linéaires (voir par exemple [27]).

Définition 1.2.3 (Condition de rang de Kalman). Soit m, n deux entiers positifs.
Supposons A ∈Mn(R) et B ∈Mn,m(R). Nous introduisons la matrice de Kalman
associée à A et B définie par [A|B] = [An−1B| · · · |AB|B] ∈ Mn,nm(R). On dit
que (A,B) satisfait la condition de rang de Kalman si [A|B] est une matrice de
plein rang.

Cette condition de Kalman pour la contrôlabilité est introduite dans [28], qui
est un critère pour un système linéaire autonome ẋ = Ax + Bu avec un contrôle
u ∈ L∞(]T0, T1[,Rm). De plus, nous remarquons que la condition de rang de
Kalman est une condition équivalente pour la contrôlabilité du système linéaire
autonome ẋ = Ax+Bu (on peut se référer à [17, Remarque 1.17]).

Définition 1.2.4 (Opérateur de Kalman). Supposons que X ∈ Rn×n and Y ∈
Rn×m. De plus, soit D ∈ Rn×n une matrice diagonale. Alors, l’opérateur de
Kalman associée à (−D∆+X, Y ) est une opérateur K = [−D∆+X|Y ] : D(K ) ⊂
(L2)nm → (L2)n), avec le domaine de l’opérateur D(K ) = {u ∈ (L2)nm : K u ∈
(L2)n}.
Définition 1.2.5 (Condition de rang de l’opérateur de Kalman). On dit que
l’opérateur de Kalman K satisfait la condition de rang de l’opérateur de Kalman
si Ker(K ∗) = {0}.

La condition de rang de l’opérateur Kalman peut être reformulée comme suit.

Proposition 1.2.6. [6, Proposition 2.2] La condition de rang de l’opérateur Kalman
est equivalent à la condition de rang de Kalman spectral suivante:

rang[(λD +X)|Y ] = n,∀λ ∈ σ(−∆).

En particulier, soit C > 0 une constante et D = CIdn. Alors, La condition de rang
de l’opérateur Kalman est equivalent à la condition de rang de Kalman donnée par
Définition 1.2.3 (voir [6, Remark 1.2]).
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1.2.3 Méthode d’unicité de Hilbert

Pour l’équation (1.2.1), nous introduisons l’équation adjointe comme suit:
�Kv = 0 dans ]0, T [×Ω,
v = 0 sur ]0, T [×∂Ω,
v|t=0 = v0(x), ∂tv|t=0 = v1(x),

(1.2.2)

Définition 1.2.7. On dit qu’une équation d’onde homogène (1.2.2) est observable
dans [0, T ] × ω s’il existe une constante C > 0 telle que chaque solution v ∈
C0(0, T, L2) ∩ C1(0, T,H−1) de l’équation d’onde homogène (1.2.2) satisfait à

C

∫ T

0

∫
ω

|κv|2dxdt ≥ ||v0||2L2 + ||v1||2H−1 . (1.2.3)

Ici, l’inégalité (1.2.3) est appelée l’inégalité d’observabilité pour l’équation ad-
jointe.

Selon la méthode de l’unicité de Hilbert de J.-L. Lions [38], la propriété de con-
trôlabilité est équivalente à une inégalité d’observabilité pour le système adjoint.

Théorème 1.2.8. L’équation d’onde (1.2.1) est contrôlable à zéro si et seulement
si l’équation adjointe (1.2.2) est observable dans [0, T ]× ω.

L’idée de preuve de ce théorème est la méthode d’unicité de Hilbert, qui
établit la dualité entre la contrôlabilité à zéro et l’observabilité. Nous définissons
l’opérateur R par

R : f ∈ L2(]0, T [×ω) 7→ (u0, u1) ∈ H1
0 × L2, (1.2.4)

où u est la solution de (1.2.1) avec (u|t=T , ∂tu|t=T ) = (0, 0). D’autre part, nous
définissons l’opérateur S par

S : (v0, v1) ∈ L2 ×H−1 7→ v1]0,T [(t)1ω(x) ∈ L2(]0, T [×ω), (1.2.5)

où v résout l’équation adjointe (1.2.2). Par conséquent, la contrôlabilité à zéro est
la surjectivité de l’opérateur R et l’observabilité est la coercitivité de l’opérateur
S. Le Théorème 1.2.8 implique la dualité R∗ = S.

Remarque 1.2.9. La coercivité de S implique son injectivité, c’est-à-dire, un
résultat de la continuation unique de (1.2.2) : si v résout (1.2.2) et s’annule dans
[0, T ]× ω, alors v ≡ 0.
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1.2. GÉNÉRALITÉS

1.2.4 Condition du contrôle géométrique

Afin d’étudier l’inégalité d’observabilité, une méthode classique consiste à suivre
le processus abstrait en trois étapes initialisé par Rauch et Taylor : [46](voir
également [10]). Il peut être détaillé comme suit :

• Premièrement, obtenir l’information microlocale sur la région observable.
Montrer par contradiction et on obtient différents types de convergence dans
le sous-domaine ]0, T [×ω et le domaine ]0, T [×Ω.

• Deuxièmement, utilisez la mesure de défaut microlocale (qui est due à Gérard
[23] et Tartar [47]), ou le théorème de propagation des singulaties (voir [26,
Section 18.1] ) pour prouver une estimation d’observabilité faible :

||v0||2L2 + ||v1||2H−1 ≤ C(

∫ T

0

∫
ω

|κv|2dxdt+ ||v0||2H−1 + ||v1||2H−2).

• Troisièmement, utilisez les propriétés de continuation unique des fonctions
propres pour obtenir l’inégalité d’observabilité originale (1.2.3).

Pour les estimations à haute fréquence, une condition très naturelle consiste à
supposer que l’ensemble de contrôle satisfait à la condition de contrôle géométrique
(CCG).

Définition 1.2.10. Pour un sous-ensemble ω et T > 0, nous dirons que la
paire (ω, T, pK) satisfait la condition de contrôle géométrique (CCG) si tout rayon
bicharactéristique générale de pK rencontre ω en un temps t < T , où pK est le
symbole principal de �K.

Nous donnerons la définition des bicharactéristiques dans la 1.3.1. Cette con-
dition a été soulevée par Bardos, Lebeau et Rauch [9] lorsqu’ils ont considéré la
contrôlabilité d’une équation scalaire à ondes et est maintenant devenue une hy-
pothèse de base pour la contrôlabilité des équations à ondes. Dans [14], les auteurs
montrent que la condition de contrôle géométrique est une condition nécessaire et
suffisante pour la contrôlabilité exacte de l’équation d’onde avec conditions de
Dirichlet et des contrôles aux limites continues.

1.2.5 Propriété de la continuation unique

Comme nous le savions, la propriété de la continuation unique n’implique pas la
contrôlabilité en dimension infinie. En effet, par exemple, sur une variété rieman-
nienne compacte, les valeurs propres du laplacien étant discrètes, le régime des
basses fréquences est engendré par un nombre fini de fonctions propres du lapla-
cien. C’est essentiellement l’idée de l’argument unicité-compacité dans l’article de
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Bardos, Lebeau, et Rauch [38]. Cet argument ramène l’observabilité du régime des
basses fréquences à la propriété de la continuation unique des fonctions propres du
laplacien. C’est-à-dire, si u satisfait l’équation,

−∆u = λu, λ ∈ C (1.2.6)

et si u|ω = 0, a-t-on u ≡ 0 dans Ω?
Lorsque ∆ est un opérateur différentiel à coefficients analytiques, Holmgren

a montré l’unicité de solution parmi les distributions. Le premier effort pour
supprimer l’analyticité est dû à Carleman [16], qui a montré l’unicité en supposant
que les caratéristiques de l’équation sont simples. Il y a beaucoup de litterature
sur l’inégalité de Craleman, par exemple, voir [?, ?].

1.3 Mesure de défaut pour l’équation des ondes

1.3.1 Préliminaires géométriques

Soit B = {y ∈ Rd : |y| < 1} la boule unité de Rd et localement on identifie
M = Ω × Rt avec [0, 1[×B. Pour z ∈ M = Ω × Rt, on note z = (x, y),où
x ∈ [0, 1[ et y ∈ B. De plus, z ∈ ∂M = ∂Ω× Rt si et seulement si z = (0, y). Soit
R = R(x, y,Dy) un opérateur pseudo-différentiel scalaire (C∞) tangentiel classique
de degré 2, auto-joint, défini au voisinage de [0, 1] × B, de symbole principal réel
r(x, y, η), on définit les fonctions r0 et r1 par

r(x, y, η) = r0(y, η) + xr1(y, η) +O(x2).

On supposera que la fonction homogène de degré 2 en η, r(x, y, η) vérifie

∂r

∂η
6= 0 pour (x, y) ∈ [0, 1[×B et η 6= 0.

Soitent également Q0(x, y,Dy) et Q1(x, y,Dy) des opérateurs pseudo-différentiels
tangentiels classiques définis au voisinage de de [0, 1] × B, de degrés respectifs 0
et 1, de symboles principaux q0 et q1. On note P l’opérateur de degré 2:

P = (∂2
x +R) +Q0∂x +Q1

Le symbole principal p de P est scalaire et vaut p = −ξ2 + r(x, y, η). Donc, on
décompose T ∗∂M en l’union disjointe E ∪ G ∪ H, où

E = {r0 < 0},G = {r0 = 0},H = {r0 > 0}.
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On dit que ρ ∈ E est elliptique, ρ ∈ G est glissant et ρ ∈ H est hyperbolique. On
note Char(P ) la variété caractéristique de P par

Char(P ) = {(x, y, ξ, η) ∈ T ∗Rd+1|M : ξ2 = r(x, y, ξ, η)}.

Pour l’ensemble glissant G, on a la décomposition G =
⋃∞
j=2 Gj, avec

G2 = {(y, η) : r0(y, η) = 0, r1(y, η) 6= 0},
G3 = {(y, η) : r0(y, η) = 0, r1(y, η) = 0, Hr0(r1) 6= 0},

...
Gk+3 = {(y, η) : r0(y, η) = 0, Hj

r0
(r1) = 0,∀j ≤ k,Hk+1

r0
(r1) 6= 0},

...
G∞ = {(y, η) : r0(y, η) = 0, Hj

r0
(r1) = 0,∀j}.

Ici, Hr0 est le champ de vecteurs hamiltonien de r0. De plus, pour G2, on note
G2,± = {(y, η) : r0(y, η) = 0,±r1(y, η) > 0}. Alors, G2 = G2,+ ∪ G2,−. On dit que
ρ ∈ G2,− est strictement glissant et ρ ∈ G2,+ est diffractif. Pour ρ ∈ Gj, on dit que
ρ est glisant d’ordre j.

Définition 1.3.1. On dit que Ω n’a pas de contact d’ordre infini avec ses tangentes
si il existe N ∈ N telle que G =

⋃N
j=2 Gj.

Définition 1.3.2. On appelle bicaractéristique généralisée toute application con-
tinue γ, de R dans T ∗bM telle qu’en dehors d’un ensemble de points isolés I,
γ(s) ∈ T ∗M ∪ G, si s ∈ I, on a γ(s) ∈ H et si s /∈ I, γ est différentiable
avec

1. dγ
ds

(s) = Hp(γ(s)) si γ(s) ∈ T ∗M ∪ G2,+

2. dγ
ds

(s) = H−r0(γ(s)) si γ(s) ∈ G\G2,+.

Remarque 1.3.3. Il est classique que les définitions que nous avons exprimées en
coordonnées sont intrinsèques et que si Ω n’a pas contact d’ordre infini avec ses
tangentes, par tout point ρ0 il passe une et une seule bicaractéristique généralisée
telle que γ(0) = ρ0. Voir [42, 43].

Pour plus de détails, voir [15] and [13].

1.3.2 Mesure de défaut

Dans cette section, nous allons donner deux approches pour construire la mesure
de défaut. La première est basée sur l’article de Gérard et Leichtnam [24] pour
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l’équation de Helmoltz et Burq [13] pour l’équation d’onde. L’autre suit l’idée
de l’article [31] de Lebeau et nous nous appuyons sur l’article [15] de Burq et
Lebeau pour la mise en place des systèmes d’onde. Pour la première, on considère
(uk)k∈N ⊂

(
L2
loc(R

+;L2(Ω))
)n une suite bornée d’élements de

(
L2
loc(R

+;L2(Ω))
)n,

qui satisfait {
Puk = o(1)H−1 ,

uk|∂M = 0.
(1.3.1)

On suppose que la suite (uk) converge faiblement vers 0 et on note uk ⊂
(
L2
loc(R

+;L2(Rd))
)n

le prolongement par 0 de uk à l’extérieur de l’ouvert M . Suivant la [13, Section
1], nous avons l’existence de la mesure de défaut microlocale comme suit :

Proposition 1.3.4. On peut donc, quitte à extraire une sous-suite lui associer
une mesure positive sur S∗((R+ × Rd)) µ, vérifiant pour tout A ∈ A

lim
k→∞

(Auk, uk)L2 = 〈µ, σ(A)〉, (1.3.2)

où A est une espace des matrices n × n d’opérateurs pseudo-différentiels clas-
siques d’ordre 0, à support compact dans R+ × Rd et σ(A) est le symbole principal
d’opérateur A, qui est une matrice de fonctions lisses, homogènes d’ordre 0 dans
la variable ξ, c’est-à-dire une fonction sur S∗((R+ × Rd)).

D’après [13, Théorème 15], nous avons la proposition suivante.

Proposition 1.3.5. La mesure de défaut µ vérifie les propriétés suivantes:

• La support de la mesure µ est inclus dans l’intersection de la variété carac-
téristique de l’équation des ondes avec R+ × Ω:

supp(µ) ⊂ Char(P ) = {(t, x, τ, ξ);x ∈M, τ 2 = |ξ|2x}. (1.3.3)

• La mesure µ ne charge pas l’ensemble hyperbolique dans ∂M :

µ(H) = 0.

• En particulier, si n = 1, la mesure scalaire µ est invariante le long du flot
bicaractéristique généralisé.

D’autre part, on note A une espace des matrices n × n d’opérateurs A de la
forme A = Ai + At où Ai est un opérateur pseudo-différentiel classique d’ordre 0,
à support compact dans M (i.e, vérifiant Ai = ϕAiϕ pour un ϕ ∈ C∞0 (M)) et où
At est un opérateur pseudo-différentiel tangentiel classique d’ordre 0, à support
compact dans M (i.e, vérifiant At = ϕAtϕ pour un ϕ ∈ C∞(M)).
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Remarque 1.3.6. On note le fibre de cotangente compressée de Melrose par bT ∗M
et l’appication canonique j:T ∗M 7→ bT ∗M , défini par

j(x, y, ξ, η) = (x, y, xξ, η).

On pose
Z = j(Char(P )), Ẑ = Z ∪ j(T ∗M |x=0),

et
SẐ = (Ẑ\M)/R∗+, SZ = (Z\M)/R∗+.

Remarque 1.3.7. SẐ et SZ sont les espaces quotients sphérique et des espaces
métriques localement compacts.

Pour A ∈ A, avec le symbole principal a = σ(A), on définit

κ(a)(ρ) = a(j−1(ρ)), ∀ρ ∈ bT ∗M.

Donc, on obtient l’ensemble K = {κ(a) : a = σ(A), A ∈ A} ⊂ C0(SẐ;End(Cn)).
On noteraM+ l’espace des mesures boréliennes µ sur SẐ, à valeurs hermitiennes
positives sur Cn. Une mesure µ de M+ est donc un élément du dual de l’espace
C0

0(SẐ;End(Cn)) qui vérifie

〈µ, a〉 ≥ 0, ∀a ∈ C0(SẐ;End+(Cn)),∀µ ∈M+,

où End+(Cn) désigne l’ensemble des matrices n× n hermitiennes positives.

Proposition 1.3.8. Quitte à extraire une sous-suite de la suite (uk), il existe une
mesure µ ∈M+ telle que

∀A ∈ A, lim
k→∞

(Auk, uk)L2 = 〈µ, κ(σ(A))〉. (1.3.4)

Pour plus de détails, voir [15]. On considére S une hypersurface transverse
à le flot Melrose-Sjöstrand sur SZ. Alors localement, SZ = Rs × S où s est le
paramètre bien choisi le long de le flot.

Lemme 1.3.9. La mesure µ vérifie les propriétés suivantes: La support de la
mesure µ est inclus dans SZ et il existe une fonction

(s, z) ∈ Rs × S 7→M(s, z) ∈ Cn

qui est continue µ-presque partout telle que la mesure P∗µ = M∗µM défini pour
a ∈ C0(SZ) par

〈M∗µM, a〉 = 〈µ,MaM∗〉
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vérifie
d

ds
P∗µ = 0.

On dit que la mesure µ est invariante le long du flot associé à M . De plus, la
fonction M est continue et le long de toute bicaractéristique généralisée la matrice
M est solution d’une équation différentielle dont les coefficients peuvent être ex-
plicitement calculés en termes de géométrie et des différents termes de l’opérateur
P .

Pour l’équation différentielle de M , on peut voir [15, Section 3.2].

1.4 La contrôlabilité d’une équation d’onde scalaire

Dans cette section, nous donnons une preuve schématique de la contrôlabilité d’une
équation d’onde scalaire telle que nous l’avons introduite en (1.2.1):

�Ku = f1ω dans ]0, T [×Ω,
u = 0 sur ]0, T [×∂Ω,
u|t=0 = u0(x), ∂tu|t=0 = u1(x),

(1.4.1)

où nous supposons que f ∈ L2(]0, T [×ω) et les données initiales (u0, u1) ∈ H1
0 (Ω)×

L2(Ω). Nous considérons la contrôlabilité à zéro. La preuve est basée sur les trois
étapes suivantes :

1. (Observabilité) En appliquant la méthode d’unicité de Hilbert, la propriété de
contrôlabilité est équivalente à une inégalité d’observabilité pour le système
adjoint. Ici, nous devons seulement prouver : ∃C > 0 tel que pour toutes
solutions de l’équation adjointe :

�Kv = 0 dans ]0, T [×Ω,
v = 0 sur ]0, T [×∂Ω,
v|t=0 = v0(x), ∂tv|t=0 = v1(x),

(1.4.2)

on a

||v0||2L2 + ||v1||2H−1 ≤ C

∫ T

0

∫
ω

|v|2dxdt. (1.4.3)

2. (Estimations à haute fréquence) Nous établissons d’abord une inégalité d’observabilité
faible comme suit :

||v0||2L2 + ||v1||2H−1 ≤ C

(∫ T

0

∫
ω

|v|2dxdt+ ||v0||2H−1 + ||v1||2H−2

)
. (1.4.4)
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Nous prouvons cette inégalité par l’argument de contradiction. Supposons
que l’inégalité (1.4.2) soit fausse, il existe une suite (vk,0, vk,1)k∈N dans L2 ×
H−1 telle que

||vk,0||2L2 + ||vk,1||2H−1 = 1, (1.4.5)
||vk,0||2H−1 + ||vk,1||2H−2 → 0, k →∞ (1.4.6)∫ T

0

∫
ω

|vk|2dxdt→ 0, k →∞ (1.4.7)

où vk est la solution de (1.4.2) avec les données initiales (vk,0, vk,1). Par
conséquent, il existe une mesure de défaut microlocale µ associée à la suite
bornée vk. D’après la section précédente, nous savons que µ est invariant le
long du flot bicaractéristique généralisé. De plus, nous savons que µ|]0,T [×ω =
0 par (1.4.7). Par conséquent, on obtient µ ≡ 0. En combinant avec la loi
de conservation de l’énergie de l’équation d’onde homogène (1.4.2), il y a
une contradiction avec l’hypothèse (1.4.5). Par conséquent, nous prouvons
l’inégalité d’observabilité faible (1.4.4).

3. (Estimations à basse fréquence) Nous utilisons l’inégalité d’observabilité faible
(1.4.4) pour montrer l’observabilité originale (1.4.3). Nous argumentons
également par contradiction. Supposons que (1.4.3) soit fausse, alors, il
existe une séquence (vk,0, vk,1)k∈N dans L2 ×H−1 telle que

||vk,0||2L2 + ||vk,1||2H−1 = 1, (1.4.8)∫ T

0

∫
ω

|vk|2dxdt→ 0, k →∞ (1.4.9)

où vk est la solution de (1.4.2) avec les données initiales (vk,0, vk,1). D’après
l’inégalité d’observabilité faible, on a

1 = ||vk,0||2L2 + ||vk,1||2H−1 ≤ C

(∫ T

0

∫
ω

|vk|2dxdt+ ||vk,0||2H−1+||vk,1||2H−2

)
.

(1.4.10)
Supposons que (vk,0, vk,1) ⇀ (v0, v1) in L2 × H−1 et v est la solution de
l’équation adjointe (1.4.2) avec les données initiales (v0, v1). Puisque L2 ×
H−1 7→ H−1 ×H−2 est compact, nous savons que ||vk,0||2H−1 + ||vk,1||2H−2 →
||v0||2H−1 + ||v1||2H−2 . En conséquence, si k tend vers l’infini, on obtient

1 ≤ C
(
||v0||2H−1+||v1||2H−2

)
. (1.4.11)

On note

N (T ) = {(w0, w1) ∈ L2 ×H−1 : w(t, x) = 0, pour t ∈]0, T [, x ∈ ω}.
(1.4.12)
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Ici w est une solution de l’équation adjointe (1.4.2) avec les données initiales
(w0, w1). Par conséquent, (v0, v1) ∈ N (T ). Ensuite, nous prouvons que
N (T ) = {0}. D’après (1.4.4), nous savons que N (T ) a une dimension finie.

On note A =

(
0 1
−∆K 0

)
. Alors N (T ) est stable sous l’application de

A . Par conséquent, N (T ) contient un vecteur propre de A , c’est-à-dire que
∃λ ∈ C et (φ0, φ1) ∈ H1

0 × L2 tel que A

(
φ0

φ1

)
= λ

(
φ0

φ1

)
, dans Ω,

φ0 = 0, dans ω.
(1.4.13)

Ceci est équivalent à : pour λ ∈ C et φ0 ∈ H1
0{

−∆φ0 = λ2φ0, dans Ω,
φ0 = 0, dans ω. (1.4.14)

Il s’agit d’un problème classique de continuation unique. En utilisant les esti-
mations de Carleman (voir [16]), nous obtenons que φ0 ≡ 0. Par conséquent,
nous savons que N (T ) = {0}. Par conséquent, nous avons (v0, v1) = (0, 0),
ce qui est une contradiction avec l’hypothèse (1.4.11). Par conséquent, nous
prouvons l’inégalité d’observabilité (1.4.3).

1.5 Les systèmes des ondes couplées

1.5.1 Couplé à la fonction de contrôle

Dans cette section, on considére le problème de contrôlabilité simultanée d’un
système d’onde avec différentes vitesses. On peut trouver ce résultat dans [44].

Un modèle simple

Nous présentons d’abord un exemple simple comme suit :
(∂2
t −∆)u1 = f1]0,T [(t)1ω(x)

(∂2
t − 2∆)u2 = f1]0,T [(t)1ω(x)

uj = 0 sur ]0, T [×∂Ω, j = 1, 2,
uj(0, x) = u0

j(x) ∈ H1
0 , ∂tuj(0, x) = u1

j(x) ∈ L2, j = 1, 2.

(1.5.1)

Remarquez que ces deux équations d’onde ont des vitesses différentes et que nous
utilisons la même fonction de contrôle f ∈ L2(]0, T [×ω) pour contrôler les deux
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équations en même temps. Pour l’exemple (1.5.1), en appliquant la méthode
d’unicité de Hilbert, nous devons seulement prouver une inégalité d’observabilité

2∑
i=1

(||v0
i ||2L2 + ||v1

i ||2H−1) ≤ C

∫ T

0

∫
ω

|v1 + v2|2dxdt (1.5.2)

pour les solutions (v1, v2) du système adjoint avec les données initiales (v0
i , v

1
i ) :{

(∂2
t −∆)v1 = 0

(∂2
t − 2∆)v2 = 0

(1.5.3)

Pour prouver l’inégalité (1.5.3), nous estimons d’abord le régime à haute fréquence.
Puisque les deux équations d’onde ont des vitesses différentes, alors les manifolds
caractéristiques sont disjoints, ce qui implique que ||v1 + v2||2L2 ≈ ||v1||2L2 + ||v2||2L2

dans le régime haute fréquence. Avec l’application de la mesure de défaut, nous
savons que pour les hautes fréquences, observer la somme v1 +v2 est presque équiv-
alent à observer v1 et v2. Ensuite, on s’intéresse au régime des basses fréquences. Il
est équivalent de considérer un problème de continuation unique pour les fonctions
propres comme suit : seules les solutions nulles satisfont

−∆φ1 = λφ1 dans Ω,
−2∆φ2 = λφ2 dans Ω,
φ1 + φ2 = 0 dans ω.

(1.5.4)

Dans cet exemple, cette propriété est facile à prouver. Comme les fonctions propres
du laplacien sont analytiques, nous savons que φ1 +φ2 ≡ 0 dans tout le domaine Ω.
Ensuite, en additionnant deux équations, on obtient que ∆φ2 = 0. En combinant
avec la condition de Dirichlet, nous savons que φ2 ≡ 0, ce qui implique que φ1 =
−φ2 ≡ 0. Par conséquent, on peut prouver ce problème de contrôle simultané. Par
conséquent, nous concluons trois caractéristiques de ce type de problème :

1. Les équations d’onde ont des vitesses différentes alors que nous utilisons
la même fonction de contrôle pour contrôler toutes ces équations en même
temps.

2. En considérant l’inégalité d’observabilité, nous utilisons la norme localisée
(restreinte dans le sous-domaine ω) de la somme des solutions pour contrôler
la norme d’énergie totale des données initiales.

3. Nous avons besoin d’une propriété de continuation unique pour les fonctions
propres associées au système d’onde.
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Contrôle simultané des systèmes d’ondes

Dans mon article [44], on considère la contrôlabilité exacte sur un domaine ouvert Ω
de systèmes des ondes avec des vitesses différentes, couplés par une seule fonction
de contrôle agissant sur un sous-ensemble ouvert ω. Pour être plus précis, on
considère la contrôlabilité intérieure simultanée pour le système des ondes suivant
: 

�K1u1 = b1f1]0,T [(t)1ω(x) dans ]0, T [×Ω,
�K2u2 = b2f1]0,T [(t)1ω(x) dans ]0, T [×Ω,
...
�Knun = bnf1]0,T [(t)1ω(x) dans ]0, T [×Ω,
uj = 0 sur ]0, T [×∂Ω, 1 ≤ j ≤ n,
uj(0, x) = u0

j(x), ∂tuj(0, x) = u1
j(x), 1 ≤ j ≤ n.

(1.5.5)

Ici, nous choisissons Ki(1 ≤ i ≤ n) pour être n différentes matrices symétriques
définies positives, ce qui est une généralisation de n différentes vitesses d’onde
de différentes métriques constantes. En outre, il est également important que la
même fonction de contrôle f apparaît dans toutes les équations. {bi}1≤i≤n sont n
coefficients constants non nuls. Nous pourrions considérer cet exemple comme un
cas particulier où le couplage n’apparaît que dans la fonction de contrôle. Pour ce
système, nous sommes en mesure de prouver le résultat de contrôlabilité partielle
comme suit :

Théorème 1.5.1. Pour T > 0, supposons que :

1. (ω, T, pKi) satisfait CCG, i = 1, 2, · · · , n,

2. K1 > K2 > · · · > Kn dans ω,

3. Ω n’a pas de contact d’ordre infini avec ses tangentes.

Alors, il existe un sous-espace de dimension finie E ⊂ (H1
0 (Ω) × L2(Ω))n tel que

le système (1.5.5) est P−exactement contrôlable, où P est le projecteur orthogonal
sur E⊥.

Comme nous l’avons présenté précédemment, afin d’étudier les basses fréquences,
nous devons introduire la notion de continuation unique des fonctions propres.

Définition 1.5.2. On dit que le système (1.5.5) satisfait à la propriété de contin-
uation unique des fonctions propres si la propriété suivante est vérifiée : ∀λ ∈ C,
la seule solution (φ1, · · · , φn) ∈ (H1

0 (Ω))n de
−∆K1φ1 = λ2φ1 dans Ω,
−∆K2φ2 = λ2φ2 dans Ω,
· · ·
−∆Knφn = λ2φn dans Ω,
b1κ1φ1 + · · ·+ bnκnφn = 0 dans ω,
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est la solution zéro (φ1, · · · , φn) ≡ 0.

Donc, on a la contrôlabilité exacte comme suit

Théorème 1.5.3. PourT > 0, supposons que :

1. (ω, T, pKi) satisfait CCG, i = 1, 2, · · · , n,

2. K1 > K2 > · · · > Kn dans ω,

3. Ω n’a pas de contact d’ordre infini avec ses tangentes,

4. The system (1.5.5) satisfait à la propriété de continuation unique des fonc-
tions propres.

Alors, le système (1.5.5) est exactement contrôlable dans (H1
0 (Ω)× L2(Ω))n.

Comme nous l’avons présenté dans la section précédente, nous prouvons ce
théorème par une procédure similaire. D’abord, nous appliquons la méthode
d’unicité de Hilbert, et obtiendrons l’inégalité d’observabilité : ∃C > 0 telle que
pour toute solution du système adjoint :

�K1v1 = 0 dans ]0, T [×Ω,
�K2v2 = 0 dans ]0, T [×Ω,
...
�Knvn = 0 dans ]0, T [×Ω,
vj = 0 sur ]0, T [×∂Ω, 1 ≤ j ≤ n,
(v1(0, x), ∂tv1(0, x), · · · , vn(0, x)∂tvn(0, x)) = V 0,

(1.5.6)

où V 0 ∈ (L2 ×H−1)n, nous avons :

C

∫ T

0

∫
ω

|b1κ1v1 + · · ·+ bnκnvn|2dxdt ≥ ||V 0||2(L2×H−1)n . (1.5.7)

Il nous suffit alors de prouver cette inégalité d’observabilité (1.5.7). En regardant
la haute fréquence, nous prouvons une estimation d’observabilité faible :

||V 0||2(L2×H−1)n ≤ C

(∫ T

0

∫
ω

|
n∑
j=1

bjκjvj|2dxdt+ ||V 0||2(H−1×H−2)n

)
. (1.5.8)

En supposant que l’inégalité ci-dessus soit fausse, nous pourrions obtenir une
séquence (V 0,k)k∈N telle que:

||V 0,k||2(L2×H−1)n = 1, (1.5.9)
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∫ T

0

∫
ω

|b1κ1v
k
1 + · · ·+ bnκnv

k
n|2dxdt→ 0, k →∞, (1.5.10)

and
||V 0,k||2(H−1×H−2)n → 0, k →∞. (1.5.11)

Nous utilisons ici vki (1 ≤ i ≤ n) pour désigner la solution du système (1.5.6) avec
les données initiales V 0,k. Puisque nous avons l’hypothèse 2, nous savons que les
variétés caractéristiques de chaque équation d’onde sont disjointes, ce qui implique
que ∫ T

0

∫
ω

|b1κ1v
k
1 + · · ·+ bnκnv

k
n|2dxdt ≈

n∑
i=1

∫ T

0

∫
ω

|biκivki |2dxdt (1.5.12)

Par conséquent, nous savons que chaque mesure de défaut µi associée à vki est nulle
par l’application de la propagation des mesures de défaut et CCG. Ceci fournit une
contradiction avec ||V 0,k||2(L2×H−1)n = 1. Ensuite, nous combinons l’hypothèse (4),
nous savons que l’inégalité d’observabilité est vraie. Cela nous donne le résultat
de la contrôlabilité exacte du système (1.5.5).

Quelques résultats sur les propriétés de continuation unique

Comme nous pouvons le voir dans l’exemple simple, les propriétés de continuation
unique définies dans la Définition 1.5.2 sont vraies pour les métriques à coefficient
constant. Mais nous pouvons aussi construire un contre-exemple tel que cette
propriété de continuation unique ne tienne pas. En dimension 1, nous supposons
que la métrique g = c(x)dx2. Alors, ∆g = 1

c
d2

dx2 − c′

2c2
d
dx
. Fixons l’intervalle ouvert

]0, π[ et le sous-intervalle ]a, b[⊂]0, π[, (a > π
2
). Nous considérons maintenant le

problème de la continuation unique :
u′′1 = −λ2u1,

∆gu2 = −λ2u2,
u1 + u2 = 0 in ]a, b[,
u1, u2 ∈ H1

0 (]0, π[).

(1.5.13)

Nous avons le résultat suivant :

Théorème 1.5.4. Il existe une métrique riemannienne lisse g = c(x)dx2, et deux
fonctions propres u1, u2 de ∆g et d2

dx2 sur ]0, π[ associée à la valeur propre 1 telle
que u1 + u2 = 0, dans ]a, b[⊂]0, π[ et u1 + u2 6≡ 0 dans ]0, π[.

Les lecteurs peuvent trouver la construction détaillée de ce contre-exemple dans
la section 3.5. En regardant le système 1.5.13, nous considérons l’intersection du
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spectre de deux Laplaciens avec des métriques différentes. Définissons l’espace de
toutes les métriques lisses sur l’intervalle ouvert ]0, π[ parM1. Nous prouvons la
proposition suivante :

Proposition 1.5.5. En dimension 1, supposons que nous fixions le laplacien ∆ =
d2

dx2 dans ]0, π[ avec son spectre σ(∆). Alors l’ensemble Guc = {g ∈ M1 : σ(∆g) ∩
σ(∆) = ∅} est comaigre dansM1.

Alors, nous obtenons immédiatement le corollaire suivant:

Corollaire 1.5.6. Fixez ∆ = d2

dx2 , pour toute métrique g ∈ Guc, le système (1.5.13)
a une solution unique u1 = u2 = 0.

En dimension 2, nous avons le résultat similaire:

Proposition 1.5.7. En dimension 2, supposons que nous fixions une métrique g0

et le laplacien ∆g0 avec son spectre σ(∆g0). Alors l’ensemble Guc = {g ∈ M2 :
σ(∆g) ∩ σ(∆g0) = ∅} est comaigre dansM2.

Et pour les détails de la preuve, nous nous référons à la section 3.5.4.

1.5.2 Couplées via des termes d’ordre zéro «en cascade»

Dans cette section, nous considérons principalement le Laplacien à coefficients
constants. Il s’agit d’un travail conjoint avec Pierre Lissy. Dans cet article, nous
avons prouvé la contrôlabilité d’un système des ondes couplées avec un seul contrôle
et différentes vitesses.

Un modèle simple

D’adord, nous présentons un exemple simple comme suit:
(∂2
t −∆)u1 + u2 = 0 dans ]0, T [×Ω,

(∂2
t − 2∆)u2 + u3 = 0 dans ]0, T [×Ω,

(∂2
t − 2∆)u3 = f1ω dans ]0, T [×Ω,

(1.5.14)

avec conditions de Dirichlet, où f est une fonction L2 supportée dans ]0, T [×ω. Par
rapport à (1.5.1), nous considérons une structure de couplage en cascade pour les
solutions. Notamment, le contrôle f n’agit directement que sur u3, qui lui-même
agit sur u2 tandis que u1 est contrôlé par u2.

Pour ce système, nous avons (u1, u2, u3) ∈ H4 × H2 × H1 avec des condi-
tions initiales nulle. En effet, puisque u3 satisfait une équation d’onde avec un
terme source f ∈ L1(]0, T [, L2), il est classique qu’il existe une solution unique
u3 ∈ C1([0, T ], H1

0 ) ∩ C0([0, T ], L2). Puisque u2 satisfait une équation d’onde
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avec un terme source −u3, alors u2 ∈ C1([0, T ], H2) ∩ C0([0, T ], H1
0 ). Pour u1,

de même, on obtient que u1 ∈ C1([0, T ], H3) ∩ C0([0, T ], H2). Maintenant, nous
avons besoin d’énoncer une propriété de régularité supplémentaire pour u1. En
appliquant l’opérateur de d’Alembert �2 = ∂2

t − 2∆ des deux côtés de l’équation
de �1u1 = (∂2

t −∆)u1 = −u2, on obtient que

�2�1u1 = −�2u2.

Puisque �2u2 = −u3, on obtient alors que �2�1u1 = u3. Nous considérons que
�2u1 satisfait une équation d’onde avec un terme source u3. Par conséquent,
nous savons que �2u1 ∈ C1([0, T ], H2) ∩ C0([0, T ], H1

0 ). Puisque �1u1 = −u2 ∈
C1([0, T ], H2)∩C0([0, T ], H1

0 ), nous savons que ∆u1 = �1u1−�2u1 ∈ C1([0, T ], H2)∩
C0([0, T ], H1

0 ). Donc, nous savons que u1 ∈ C1([0, T ], H4) ∩ C0([0, T ], H3). Alors,
nous remarquons un résultat de régularité (u1, u2, u3) ∈ H4 ×H2 ×H1. On peut
se référer à [20] pour une preuve différente.

De plus, avec des conditions initiales nulles, nous remarquons également qu’il
existe une condition de compatibilité pour ce problème de contrôle, c’est-à-dire
(−∆)2u1 + ∆u2 ∈ H1

0 . En fait, faisons d’abord une reformulation pour le système.
v1 = D3

t u1,
v2 = Dtu2,
v3 = u3.

(1.5.15)

Et (v1, v2, v3) satisfait au système suivant:
�1v1 +D2

t v2 = 0 dans ]0, T [×Ω,
�2v2 +Dtv3 = 0 dans ]0, T [×Ω,
�2v3 = f dans ]0, T [×Ω.

(1.5.16)

Comme
−D2

t = 2�1 −�2, (1.5.17)

on a
D2
t v2 = −(2�1 −�2)v2. (1.5.18)

Donc,
�1(v1 − 2v2)−Dtv3 = 0. (1.5.19)

On peut poser
y = Dtv1 − 2Dtv2. (1.5.20)

Alors, on a une équation pour y

�1(y + 2v3) = f. (1.5.21)
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Pour y, en utilisant les équations, on a

y = Dtv1 − 2Dtv2

= D4
t u1 − 2D2

t u2

= D2
t (−∆u1 + u2 − 2u2)

= D2
t (−∆u1 − u2)

= (−∆)2u1 + ∆u2 − u3.

Donc, on obtient
�1((−∆)2u1 + ∆u2 + u3) = f.

De plus, on a (−∆)2u1 + ∆u2 + u3 ∈ H1
0 , c’est-à-dire, (−∆)2u1 + ∆u2 ∈ H1

0 .
En considérant la régularité de u1 et u2, nous savons que (u1, u2) ∈ H4 × H2.
Par conséquent, nous pouvons seulement obtenir (−∆)2u1 + ∆u2 ∈ L2. Nous
devons considérer non seulement la régularité des solutions mais aussi les conditions
de compatibilité associées à la structure de couplage. Ceci est très différent du
système sans couplage, et même différent du système d’onde couplé par la même
vitesse ou des systèmes paraboliques couplés. A notre connaissance, il s’agit d’une
caractéristique unique pour ce type de systèmes d’ondes couplés. Cela nous motive
à considérer un système plus général avec le même type de structure de couplage.

la contrôlabilité d’un système d’équations d’ondes à vitesses différentes

On considère le système suivant: (∂2
t −D∆)U + AU = b̂f1ω dans ]0, T [×Ω,

U = 0 sur ]0, T [×∂Ω,
(U, ∂tU)|t=0 = (U0, U1) dans Ω,

(1.5.22)

avec

D =

(
d1Idn1 0

0 d2Idn2

)
n×n

, A =

(
0 A1

0 A2

)
n×n

, and b̂ =

(
0
b

)
n×1

, (1.5.23)

où n = n1 + n2 et d1 6= d2. A1 ∈ Mn1,n2(R) et A2 ∈ Mn2(R) sont deux matrices
de couplage données et b ∈ Rn2 .

Nous avons les propriétés importantes et cruciales du système (1.5.22) : tous les
coefficients sont constants, le couplage est en structure de cascade (notamment, la
commande f n’agit directement que sur U2, qui elle-même agit sur U1 par la matrice
A1), et nous nous limitons au cas d’une commande scalaire (i.e. f ∈ L2(]0, T [,Rm)
avec m = 1).

Dans la proposition suivante, nous donnons une condition équivalente de la
condition de rang de l’opérateur Kalman associée au système (1.5.22), qui est très
spécifique à notre structure de couplage particulière et au fait que nous avons un
seul contrôle.

26



CHAPTER 1. INTRODUCTION(FRANÇAIS)

Proposition 1.5.8. Nous désignons par K = [−D∆+A|B̂] l’opérateur de Kalman
associé au système (1.5.22). Alors, Ker(K∗) = {0} est équivalent à la satisfaction
de toutes les conditions suivantes

1. n1 = 1;

2. (A2, B) satisfait la condition algébrique de rang de Kalman (voir Définition
1.2.3);

3. Supposons que A1 = α = (α1, · · · , αn2). Alors ∀λ ∈ σ(−∆), α satisfait

α

(
n2−2∑
k=0

(d1 − d2)kλk
n2∑

j=k+1

ajA
j−1−k
2 + (d1 − d2)n2−1λn2−1Idn2

)
b̂ 6= 0,

(1.5.24)
où (aj)0≤j≤n2 sont les coefficients du polynôme caractéristique de la matrice
A2, c’est-à-dire χ(X) = Xn2 +

∑n2−1
j=0 ajX

j, avec la convention que an2 = 1.

Avec cette condition équivalente, nous pouvons simplifier le système:

�1u
1
1 +

∑s
j=1 αsu

2
j = 0 dans ]0, T [×Ω,

�2u
2
1 + u2

2 = 0 dans ]0, T [×Ω,
...
�2u

2
n2−1 + u2

n2
= 0 dans ]0, T [×Ω,

�2u
2
n2
−
∑n2

j=1 an2+1−ju
2
j = f1ω dans ]0, T [×Ω,

u1
1 = 0, u2

j = 0 sur ]0, T [×∂Ω, 1 ≤ j ≤ n2,

(u1
1, u

2
1, · · · , u2

n2
)|t=0 = (u1,0

1 , u2,0
1 , · · · , u2,0

n2
) dans Ω,

(∂tu
1
1, ∂tu

2
1, · · · , ∂tu2

n2
)|t=0 = (u1,1

1 , u2,1
1 , · · · , u2,1

n2
) dans Ω.

(1.5.25)

Ici n1 = 1, A1 = (α1, · · · , αs, 0, · · · , 0) et

A2 =


0 1 0 0

0 0
. . . 0

... . . . . . . 1
−an · · · −a2 −a1

 , and b =


0
...
0
1

 .

Puisque nous considérons le problème de contrôle dans un domaine Ω avec fron-
tière, il est naturel pour nous d’introduire les espaces de Hilbert suivants Hs

Ω(∆).

Définition 1.5.9. Nous désignons par (β2
j )j∈N∗ la séquence non décroissante de

valeurs propres (positives) de l’opérateur de Laplace −∆ avec condition de Dirich-
let, répétée avec multiplicité, et (ej)j∈N∗ une base orthonormée de L2(Ω) constituée
de fonctions propres associées à (β2

j )j∈N∗:

−∆ej = β2
j ej, ||ej||L2 = 1.
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Pour tout s ∈ R, nous désignons par Hs
Ω(∆) l’espace de Hilbert défini par

Hs
Ω(∆) = {u =

∑
j∈N∗

ajej;
∑
j∈N∗

(1 + β2
j )
s|aj|2 <∞}. (1.5.26)

Sous cette structure particulière de couplage, nous introduisons des conditions
de compatibilité appropriées pour le système (1.5.25). Désignons par Hr l’espace
suivant

Hr = {(u, v1, · · · , vn2) ∈ Hn2−s+2+r
Ω (∆)×Hn2−1+r

Ω (∆)× · · · ×Hr
Ω(∆) t.q.

U r
comp ∈ Hr

Ω(∆D)},
(1.5.27)

òu

U r
comp =

(
(−d1∆)n2−s+1u

+

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lvj+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lvj+k+l

)
.

(1.5.28)

Définition 1.5.10. L’espace d’état du système (1.5.25) est défini par

H1 ×H0.

Les deux conditions

U1
comp(u

1,0
1 , u2,0

1 , · · · , u2,0
n2

) ∈ H1
Ω(∆D),

U0
comp(u

1,1
1 , u2,1

1 , · · · , u2,1
n2

) ∈ H0
Ω(∆D)

sont appelées les conditions de compatibilité pour la contrôlabilité du système (1.5.25).

Avec ces espaces bien préparés, nous obtenons le résultat suivant :

Théorème 1.5.11. Pour T > 0, supposons que:

1. (ω, T, pdi) satisfait CCG, i = 1, 2.

2. Ω n’a pas de contact d’ordre infini avec ses tangentes.

3. L’opérateur de Kalman K = [−D∆ + A|B̂] satisfait à la condition de rang
de l’opérateur de Kalman, c’est-à-dire que Ker(K∗) = {0}.
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Alors le système (1.5.22) est exactement contrôlable.

Nous prouvons le théorème ci-dessus en trois étapes.

1. Étape 1: Nous simplifions le système (1.5.22), en utilisant la forme normale
de Brunovský. Ceci est basé sur la Proposition 1.5.8 et nous avons seulement
besoin de prouver la contrôlabilité exacte pour le système simplifié.

2. Étape 2: Nous utilisons les schémas d’itération pour obtenir les conditions de
compatibilité associées à la structure de couplage dans le système (1.5.22).
Par conséquent, nous préparons les espaces d’état appropriés pour la con-
trôlabilité du système.

3. Étape 3: Nous utilisons la méthode d’unicité de Hilbert pour dériver l’inégalité
d’observabilité, puis nous suivons la même procédure que dans la section
précédente. Nous établissons une inégalité d’observabilité faible et prouvons
cette inégalité d’observabilité faible par l’argument de contradiction et la
propagation des mesures de défaut pour les systèmes. Enfin, la propriété de
continuation unique est donnée par la condition de rang de Kalman.
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Chapter 2

Introduction (English)

2.1 Motivations

The controllability of the wave equations is a classic research topic in both the
control theory and the analysis of partial differential equations. There is a large
literature on the controllability of linear wave equations. One of the best results
on this subject has been obtained by Bardos, Lebeau and Rauch in their article
[10], where they introduced the famous geometric control condition and presented
the application of the microlocal analysis in the subject. We can also refer to the
paper [14] by Burq and Gérard and the paper [12] by Burq for the improvements
or a simpler proof. These results form a basic backgrounds and also provide the
main strategy for us to study the controllability of the wave equations.

As we can see, for a single wave equation, the exact controllability is by now
well-known. There is a large literature on the controllability of a scalar wave
equation through different approaches such as [10] by using microlocal analysis
as we mentioned before, [38, 29] by using multipliers, [25, 11] by using Carleman
estimates, or a completely constructive proof [30], etc.

Although we now have a better picture on the controllabilty of a single wave
equation, the controllability of systems of wave equations is still not totally un-
derstood. To our knowledge, most of the references concern the case of systems
with the same principal symbol. Alabau-Boussouira and Léautaud [5] studied the
indirect controllability of two coupled wave equations, in which their controlla-
bility result was established using a multi-level energy method introduced in [2],
and also used in [3, 4]. Liard and Lissy [37], Lissy and Zuazua [40] studied the
observability and controllability of the coupled wave systems under the Kalman
type rank condition. Moreover, we can find other controllability results for coupled
wave systems, for example, Cui, Laurent, and Wang [19] studied the observability
of wave equations coupled by first or zero order terms on a compact manifold.
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However, when we consider the controllability of the wave system coupled with
different speeds, there are very few results.

On the other hand, considering the controllability of a parabolic system, we find
that there are no differences between the coupling with same speed and different
speeds (for instance, see [6]). This also motivates us to investigate the results on
the controllability of the wave system with different speeds.

In this thesis, the main model under study is the wave equation in the following
form. Let Ω ⊂ Rd, d ∈ N∗, be a bounded, and smooth domain. For positive
constants α and β, let kij(x) : Ω → R, 1 ≤ i, j ≤ d be smooth functions which
satisfy:

kij(x) = kji(x), α|ξ|2 ≤
∑

1≤i,j≤d

kij(x)ξiξj ≤ β|ξ|2,∀x ∈ Ω,∀ξ ∈ Rd. (2.1.1)

Define K(x) to be the symmetric positive definite matrix of coefficients kij(x).
Moreover, we define the density function κ(x) = 1√

det(K(x))
. We also define the

Laplacian by ∆K = 1
κ(x)

div(κ(x)K∇·) on Ω and the d’Alembert operator �K =

∂2
t −∆K on Rt × Ω. we consider a nonhomogeneous wave equation with a source

term f :
�Ku = f, (2.1.2)

with initial conditions:
u|t=0 = u0, ∂tu|t=0 = u1. (2.1.3)

2.2 Preliminaries

In this section, we shall introduce some basic aspects in the control problem of
wave equations. We assume that ω is a nonempty open subset of Ω. We consider
the interior controllability problem for the following wave equation:

�Ku = f1ω in (0, T )× Ω,
u = 0 on (0, T )× ∂Ω,
u|t=0 = u0(x), ∂tu|t=0 = u1(x),

(2.2.1)

where f is a control function with support only localized in the subdomain ω.
It is well known that the wave equation models many physical phenomena such

as small vibrations of elastic bodies and the propagation of sound. For instance
(2.2.1) provides a good approximation for the small amplitude vibrations of an
elastic string or a flexible membrane occupying the region Ω at rest. The control
f represents then a localized force acting on the vibrating structure.
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In addition, since the wave equation is the most relevant hyperbolic equations.
Through the study of the wave equation, it helps us to understand how the prop-
erties of the hyperbolic equations act on the control problems.

Therefore it is interesting and important to study the controllability of the
wave equation as one of the fundamental models of continuum mechanics and, at
the same time, as one of the most representative equations in the theory of control
of partial differential equations.

2.2.1 Controllability

In this section, we shall introduce several different types of the controllability for
the wave equation (2.2.1).

Definition 2.2.1 (Controllability). Let T > 0.

1. (Exact controllability) We say that the wave equation (2.2.1) is exactly con-
trollable in H1

0×L2 in time T if for any initial data (u0, u1) ∈ H1
0×L2 and tar-

get data (ũ0, ũ1) ∈ H1
0×L2, there exists a control function f ∈ L2((0, T )×ω)

such that the solution of (2.2.1) issued from (u|t=0, ∂tu|t=0) = (u0, u1), sat-
isfies (u|t=T , ∂tu|t=T ) = (ũ0, ũ1).

2. (Null controllability) We say that the wave equation (2.2.1) is null controllable
in H1

0 × L2 in time T if for any initial data (u0, u1) ∈ H1
0 × L2, there exists

a control function f ∈ L2((0, T )×ω) such that the solution of (2.2.1) issued
from (u|t=0, ∂tu|t=0) = (u0, u1), satisfies (u|t=T , ∂tu|t=T ) = (0, 0).

3. (Controllability from zero) We say that the wave equation (2.2.1) is control-
lable from zero in H1

0×L2 in time T if for target data (ũ0, ũ1) ∈ H1
0×L2, there

exists a control function f ∈ L2((0, T )× ω) such that the solution of (2.2.1)
issued from (u|t=0, ∂tu|t=0) = (0, 0), satisfies (u|t=T , ∂tu|t=T ) = (ũ0, ũ1).

4. (Partial controllability) Let Π be a projection operator defined in H1
0×L2.We

say that the wave equation (2.2.1) is Π−exactly controllable in H1
0×L2 in time

T if for any initial data (u0, u1) ∈ H1
0×L2 and target data (ũ0, ũ1) ∈ H1

0×L2,
there exists a control function f ∈ L2((0, T ) × ω) such that the solution of
(2.2.1) issued from (u|t=0, ∂tu|t=0) = (u0, u1), satisfies Π(u|t=T , ∂tu|t=T ) =
Π(ũ0, ũ1).

Remark 2.2.2. Since the wave equation we consider is linear and reversible in
time, the exact controllability, null controllability and the controllability from zero
are all equivalent (one can refer to [17, Theorem 2.41]).
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2.2.2 Kalman conditions

In this section, we recall some Kalman rank conditions introduced in the literature
of coupled parabolic systems and the link between them. First of all, we recall the
usual Kalman rank condition for the controllability of linear autonomous ordinary
differential equations (see e.g. [28]).

Definition 2.2.3 (Usual algebraic Kalman rank condition). Let m, n be two pos-
itive integers. Assume A ∈ Mn(R) and B ∈ Mn,m(R). We introduce the Kalman
matrix associated to A and B given by [A|B] = [An−1B| · · · |AB|B] ∈ Mn,nm(R).
We say that (A,B) satisfies the Kalman rank condition if [A|B] is of full rank.

This Kalman’s type conditions for controllability are introduced in [28], which
is a criterion for the time invariant linear control system ẋ = Ax + Bu with a
control u ∈ L∞(]T0, T1[,Rm). Moreover, we notice that the Kalman rank condition
is an equivalent condition for the controllability of the time invariant linear control
system ẋ = Ax+Bu (one can refer to [17, Remark 1.17]).

Definition 2.2.4 (Kalman operator). Assume that X ∈ Rn×n and Y ∈ Rn×m.
Moreover, let D ∈ Rn×n be a diagonal matrix. Then, the Kalman operator associ-
ated with (−D∆ + X, Y ) is the matrix operator K = [−D∆ + X|Y ] : D(K ) ⊂
(L2)nm → (L2)n), where the domain of the Kalman operator D(K ) = {u ∈
(L2)nm : K u ∈ (L2)n}.

Definition 2.2.5 (Operator Kalman rank condition). We say that the Kalman
operator K satisfies the operator Kalman rank condition if Ker(K ∗) = {0}.

The operator Kalman rank condition can be reformulated as follows.

Proposition 2.2.6. [6, Proposition 2.2] The operator Kalman rank condition is
equivalent to the following spectral Kalman rank condition:

rank[(λD +X)|Y ] = n,∀λ ∈ σ(−∆).

In particular, let C > 0 be a constant and D = CIdn. Then, the operator Kalman
rank condition is equivalent to the usual algebraic Kalman rank condition given in
Definition 2.2.3 (see [6, Remark 1.2]).

2.2.3 Hilbert uniqueness method

For the wave equation (2.2.1), we introduce the adjoint equation as follows:
�Kv = 0 in (0, T )× Ω,
v = 0 on (0, T )× ∂Ω,
v|t=0 = v0(x), ∂tv|t=0 = v1(x),

(2.2.2)
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Definition 2.2.7. We say a homogeneous wave equation (2.2.2) is observable in
[0, T ]×ω if there exists a constant C > 0 such that every solution v ∈ C0(0, T, L2)∩
C1(0, T,H−1) of the homogeneous wave equation (2.2.2) satisfies

C

∫ T

0

∫
ω

|κv|2dxdt ≥ ||v0||2L2 + ||v1||2H−1 . (2.2.3)

Here the inequality (2.2.3) is called the observability inequality for the adjoint
equation (2.2.2).

According to the Hilbert Uniqueness Method of J.-L. Lions [38], the controlla-
bility property is equivalent to an observability inequality for the adjoint system.

Theorem 2.2.8. The wave equation (2.2.1) is null controllable if and only if the
adjoint equation (2.2.2) is observable in [0, T ]× ω.

The proof idea of this theorem is the so-called Hilbert uniqueness method
(HUM), which establishes the duality between the null controllability and the
obsevability. We define the operator R by

R : f ∈ L2((0, T )× ω) 7→ (u0, u1) ∈ H1
0 × L2, (2.2.4)

where u is the solution of (2.2.1) with (u|t=T , ∂tu|t=T ) = (0, 0). On the other hand,
we define the operator S by

S : (v0, v1) ∈ L2 ×H−1 7→ bv1(0,T )(t)1ω(x) ∈ L2((0, T )× ω), (2.2.5)

where v solves the adjoint equation (2.2.2). Therefore, the null controllability is
just the surjectivity of the operator R and the observability is just the coercivity
of the operator S. The Theorem 2.2.8 implies the duality R∗ = S.

2.2.4 Geometric control condition

In order to study the observability inequality, a classical method is to follow the
abstract three-step process initialized by Rauch and Taylor [46](see also [10]). It
can be detailed as follows:

• Firstly, get the microlocal information on the observable region. Argue by
contradiction to obtain different kinds of convergence in subdomain (0, T )×ω
and the whole domain (0, T )× Ω.

• Secondly, use microlocal defect measure (which is due to Gérard [23] and
Tartar [47]), or propagation of singulaties theorem (see [26, Section 18.1] )
to prove a weak observability estimate:

||v0||2L2 + ||v1||2H−1 ≤ C(

∫ T

0

∫
ω

|bκv|2dxdt+ ||v0||2H−1 + ||v1||2H−2).
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• Thirdly, use unique continuation properties of eigenfunctions to obtain the
original observability inequality Equation (2.2.3).

For the high frequency estimates, a very natural condition is to assume that the
control set satisfies the Geometric Control Condition(GCC).

Definition 2.2.9. For ω ⊂ Ω and T > 0, we shall say that the pair (ω, T, pK)
satisfies GCC if every general bicharacteristic of pK meets ω in a time t < T ,
where pK is the principal symbol of �K.

We will give the definition of bicharacteristics in Subsection 2.3.1. This condi-
tion was raised by Bardos, Lebeau, and Rauch [9] when they considered the con-
trollability of a scalar wave equation and has now become a basic assumption for
the controllability of wave equations. In [14], the authors show that the geometric
control condition is a necessary and sufficient condition for the exact controllability
of the wave equation with Dirichlet boundary conditions and continuous boundary
control functions.

2.2.5 Unique continuation properties

For the low frequencies of the observability inequality, this reduces to prove a
unique continuation property of the eigenfunctions of the Laplacian. That is to
say, if φ satisfies the equation

−∆Kφ = λφ, λ ∈ C, (2.2.6)

and φ|ω = 0, can we obtain that φ ≡ 0 in Ω.

2.3 Microlocal defect measures for wave equations

2.3.1 Geometric Preliminaries

Let B = {y ∈ Rd : |y| < 1} be the unit ball in Rd. In a tubular neighbourhood
of the boundary, we can identify M = Ω× Rt locally as [0, 1[×B. More precisely,
for z ∈ M = Ω × Rt, we note that z = (x, y), where x ∈ [0, 1[ and y ∈ B and
z ∈ ∂M = ∂Ω × Rt if and only if z = (0, y). Now we consider R = R(x, y,Dy)
which is a second order scalar, self-adjoint, classical, tangential and smooth pseudo-
differential operator, defined in a neighbourhood of [0, 1]×B with a real principal
symbol r(x, y, η), such that

∂r

∂η
6= 0 for (x, y) ∈ [0, 1[×B and η 6= 0. (2.3.1)
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Let Q0(x, y,Dy), Q1(x, y,Dy) be smooth classical tangential pseudo-differential
operators defined in a neighbourhood of [0, 1]×B, of order 0 and 1, and principal
symbols q0(x, y, η), q1(x, y, η), respectively. Denote P = (∂2

x + R)Id+Q0∂x +Q1.
The principal symbol of P is

p = −ξ2 + r(x, y, η). (2.3.2)

We use the usual notations TM and T ∗M to denote the tangent bundle and
cotangent bundle corresponding to M , with the canonical projection π

π : TM( or T ∗M)→M.

Denote r0(y, η) = r(0, y, η). Then we can decompose T ∗∂M into the disjoint union
E ∪ G ∪ H, where

E = {r0 < 0}, G = {r0 = 0}, H = {r0 > 0}. (2.3.3)

The sets E , G, H are called elliptic, glancing, and hyperbolic set, respectively. De-
fine Char(P) = {(x, y, ξ, η) ∈ T ∗Rd+1|M : ξ2 = r(x, y, ξ, η)} to be the characteristic
manifold of P . For more details, see [15] and [13].

2.3.2 Generalised bicharacteristic flow

We begin with the definition of the Hamiltonian vector field. For a symplectic
manifold S with local coordinates (z, ζ), a Hamiltonian vector field associated
with a real valued smooth function f is defined by the expression:

Hf =
∂f

∂ζ

∂

∂z
− ∂f

∂z

∂

∂ζ
.

Considering the principal symbol p, we can also consider the associated Hamilto-
nian vector field Hp. The integral curve of this Hamiltonian Hp, denoted by γ,
is called a bicharacteristic of p. Our next goal is to study the behavior of the
bicharacteristic near the boundary. To describe the different phenomena when a
bicharacteristic approaches the boundary, we need a more accurate decomposition
of the glancing set G. Let r1 = ∂xr|x=0. Then we can define the decomposition
G =

⋃∞
j=2 Gj, with

G2 = {(y, η) : r0(y, η) = 0, r1(y, η) 6= 0},
G3 = {(y, η) : r0(y, η) = 0, r1(y, η) = 0, Hr0(r1) 6= 0},

...
Gk+3 = {(y, η) : r0(y, η) = 0, Hj

r0
(r1) = 0,∀j ≤ k,Hk+1

r0
(r1) 6= 0},

...
G∞ = {(y, η) : r0(y, η) = 0, Hj

r0
(r1) = 0,∀j}.
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Here Hj
r0

is just the vector field Hr0 composed j times. Moreover, for G2, we can
define G2,± = {(y, η) : r0(y, η) = 0,±r1(y, η) > 0}. Thus G2 = G2,+ ∪ G2,−. For
ρ ∈ G2,+, we say that ρ is a gliding point and for ρ ∈ G2,−, we say that ρ is a
diffractive point. For ρ ∈ Gj, j ≥ 2, we say that a bicharacterisric of p tangentially
contact the boundary {x = 0} ×B with order j at the point ρ.

Consider a bicharacteristic γ(s) with π(γ(0)) ∈ M and π(γ(s0)) ∈ ∂M be
the first point which touches the boundary. Then if γ(s0) ∈ H, we can define
ξ±(γ(s0)) = ±

√
r0(γ(s0)), which are the two different roots of ξ2 = r0 at the point

γ(s0). Notice that the bicharacteristic with the direction ξ− will leave the domain
M while the bicharacteristic with the other direction ξ+ will enter into the interior
of M . This leads to a definition of the broken bicharacteristics(See [26] Section
24.2 for more details):

Definition 2.3.1. A broken bicharacteristic of p is a map:

s ∈ I\D 7→ γ(s) ∈ T ∗M\{0}

where I is an interval on R and D is a discrete subset, such that

1. If J is an interval contained in I\D, then for s ∈ J 7→ γ(s) is a bicharac-
teristic of p in M .

2. If s ∈ D, then the limits γ(s+) and γ(s−) exist and belongs to T ∗zM\{0} for
some z ∈ ∂M , and the projections in T ∗z ∂M\{0} are the same hyperbolic
point.

If γ(s0) ∈ G, we have different situations. If γ(s0) ∈ G2,+, then γ(s), locally
near s0, passes transversally and enters into T ∗M immediately. If γ(s0) ∈ G2,−

or γ(s0) ∈ Gk for some k ≥ 3, then γ(s) will continue inside T ∗∂M and follow
the Hamiltonian flow of H−r0 . To be more precise, we have the definition of the
generalized bicharacteristics(See [26] Section 24.3 for more details):

Definition 2.3.2. A generalized bicharacteristic of p is a map:

s ∈ I\D 7→ γ(s) ∈ T ∗M ∪ G

where I is an interval on R and D is a discrete subset I such that p ◦ γ = 0 and
the following properties hold:

1. γ(s) is differentiable and dγ
ds

= Hp(γ(s)) if γ(s) ∈ T ∗M or γ(s) ∈ G2,+.

2. Every t ∈ D is isolated i.e. there exists ε > 0 such that γ(s) ∈ T ∗M\T ∗∂M
if 0 < |s − t| < ε, and the limits γ(s±) are different points in the same
hyperbolic fiber of T ∗∂M .
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3. γ(s) is differentiable and dγ
ds

= H−r0(γ(s)) if γ(s) ∈ G\G2,+.

Remark 2.3.3. We denote the Melrose cotangent compressed bundle by bT ∗M and
the associated canonical map by j : T ∗M 7→ bT ∗M . j is defined by

j(x, y, ξ, η) = (x, y, xξ, η).

Under this map j, one could see γ(s) as a continuous flow on the compressed
cotangent bundle bT ∗M . This is the so-called Melrose-Sjöstrand flow.

From now on we always assume that there is no infinite tangential contact
between the bicharacteristic of p and the boundary. This is in the meaning of the
following definition:

Definition 2.3.4. We say that there is no infinite contact between the bicharac-
teristics of p and the boundary if there exists N ∈ N such that the gliding set G
satisfies

G =
N⋃
j=2

Gj.

It is well-known that under this hypothesis there exists a unique generalized
bicharacteristic passing through any point. This means that the Melrose-Sjöstrand
flow is globally well-defined. One can refer to [42] and [43] for the proof.

2.3.3 Microlocal defect measure

In this section, we will give two approaches to construct the microlocal defect
measures. The first one is based on the article by Gérard and Leichtnam [24] for
Helmoltz equation and Burq [13] for wave equations. The other one follows the
idea in the article [31] by Lebeau and we rely on the article [15] by Burq and
Lebeau for the setting of wave systems. In the first approach, we can compare two
different measures, especially the supports of two different measures. Let (uk)k∈N

be a bounded sequence in
(
L2
loc(R

+;L2(Ω))
)n, converging weakly to 0 and such

that {
Puk = o(1)H−1 ,

uk|∂M = 0.
(2.3.4)

Let uk be the extension by 0 across the boundary of Ω. Then the sequence uk is
bounded in

(
L2
loc(Rt;L

2(Rd))
)n. Let A be the space of n× n matrices of classical

polyhomogeneous pseudo-differential operators of order 0 with compact support
in R+ × Rd (i.e, A = ϕAϕ for some ϕ ∈ C∞0 (R+ × Rd)). Let us denote byM+ the
set of nonnegative Radon measures on T ∗(R+×Rd). Following [13, Section 1], we
have the existence of the microlocal defect measure as follows:
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Proposition 2.3.5 (Existence of the microlocal defect measure-1). There exists
a subsequence of (uk) (still noted by (uk)) and µ ∈M+ such that

∀A ∈ A, lim
k→∞

(Auk, uk)L2 = 〈µ, σ(A)〉, (2.3.5)

where σ(A) is the principal symbol of the operator A (which is a matrix of smooth
functions, homogeneous of order 0 in the variable ξ, i.e. a function on S∗((R+ ×
Rd)).

From [13, Théorème 15], we have the following proposition.

Proposition 2.3.6. For the microlocal defect measure µ defined above, we have
the following properties.

• The measure µ is supported on the intersection of the characteristic manifold
with R+ × Ω:

supp(µ) ⊂ Char(P) = {(t, x, τ, ξ);x ∈M, τ 2 = |ξ|2x}. (2.3.6)

• The measure µ does not charge the hyperbolic points in ∂M :

µ(H) = 0.

• In particular, if n = 1, the scalar measure µ is invariant along the generalized
bicharacteristic flow.

Remark 2.3.7. Notice first that in [13, Section 3], the author considered the case
of solutions to the wave equation at the energy level (bounded in H1

loc, and hence
was considering second order operators. However, it is easy to pass from H1 to
L2 solutions by applying the operator ∂t and conversely from L2 to H1 by applying
the operator ∂−1

t , i.e. if v is an L2 solution, considering the solution u associated
to
(
(−∆D)−1(∂tv |t=0), v |t=0

)
, which of course satisfies ∂tu = v. This procedure

amounts to replacing the test operators of order 0 A by the test operator of order
2, B = −∂t ◦A ◦ ∂t, but since τ 2 does not vanish on the characteristic manifold, it
is an elliptic factor which changes nothing.

Remark 2.3.8. Notice also that due to discontinuity of the generalised bicharac-
teristics when they reflect on the boundary at hyperbolic points (the points corre-
sponding to the left and right limits at s ∈ D), in Definition 2.3.1, the generalised
bicharacteristic flow is not well defined (there are two points above any points
corresponding to s ∈ D). However, since the measure µ does not charge these hy-
perbolic points, this flow is well defined µ almost surely and the invariance property
makes sense. Notice also that in [13, Appendice], weaker property than invariance
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(namely that the support is a union of generalised bicahracteristics) is proved. The
general result follows from this weaker result by applying the strategy in [31]. In
any case, for the purpose of the present article, the invariance of the support would
suffice.

On the other hand, let A be the space of n× n matrices of pseudo-differential
operators of order 0, in the form of A = Ai+At with Ai classical pseudo-differential
operator with compact support in M(i.e, Ai = ϕAiϕ for some ϕ ∈ C∞0 (M)) and
At a classical tangential pseudo-differential operator inM(i.e, At = ϕAtϕ for some
ϕ ∈ C∞(M)). Then denote

Z = j(Char(P)), Ẑ = Z ∪ j(T ∗M |x=0),

where j is defined in (4.2.14) and

SẐ = (Ẑ\M)/R∗+, SZ = (Z\M)/R∗+.

Remark 2.3.9. SẐ and SZ are the quotient spherical spaces of Ẑ and Z and they
are locally compact metric spaces.

For A ∈ A, with principal symbol a = σ(A), define

κ(a)(ρ) = a(j−1(ρ)),∀ρ ∈ bT ∗M.

Now, we have that K = {κ(a) : a = σ(A), A ∈ A} ⊂ C0(SẐ;End(Cn)). Define
M+ to be the space of all positive Borel measures on SẐ. By duality, we know
thatM+ is the dual space of C0

0(SẐ;End(Cn)), which verifies the property:

〈µ, a〉 ≥ 0, ∀a ∈ C0(SẐ;End+(Cn)),∀µ ∈M+,

where End+(Cn) denotes the space of n×n positive hermitian matrices. Following
the article [15] by Burq and Lebeau, we obtain the existence of the microlocal defect
measure and some properties as follows:

Proposition 2.3.10 (Existence of the microlocal defect measure-2). There exists
a subsequence of (uk) (still noted by (uk)) and µ ∈M+ such that

∀A ∈ A, lim
k→∞

(Auk, uk)L2 = 〈µ, κ(σ(A))〉. (2.3.7)

Lemma 2.3.11. The microlocal defect measure µ defined in Proposition 2.3.10
satisfies that µ1H∪E = 0 where H is the set of hyperbolic points and E is the set of
elliptic points as defined in Subsection 2.3.1.
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Remark 2.3.12. From Proposition 2.3.6, we know that supp(µ) ⊂ Char(P). No-
tice that in the interior of M , the two definitions coincide, i.e., µ|Char(P) = µ in
the interior of M . At the boundary, since both measures µ and µ do not not charge
the hyperbolic points in ∂M , we know that µ|SẐ = µ holds µ almost surely and µ
almost surely. Under this sense, we can identify the two measures.

In the following, suppose that there is no infinite contact between the bicharac-
teristic of p and the boundary. This hypothesis implies the existence and unique-
ness of the generalized bicharacteristic passing through any point, which ensures
that the Melrose-Sjöstrand flow is globally well-defined. By a suitable change of
parameter along this flow, we obtain a flow on SZ. Consider S a hypersurface tran-
verse to the flow. Then locally, SZ = Rs×S where s is the well-chosen parameter
along the flow. We have the following propagation lemma for the microlocal defect
measure.

Lemma 2.3.13. Assume that the microlocal defect measure µ is defined in Propo-
sition 4.2.8. Then µ is supported in SZ and there exists a function

(s, z) ∈ Rs × S 7→M(s, z) ∈ Cn

µ−almost everywhere continuous such that the pull back of the measure µ by
M(i.e., the measure P∗µ = M∗µM defined for a ∈ C0(SZ)) by

〈M∗µM, a〉 = 〈µ,MaM∗〉

satisfies
d

ds
P∗µ = 0.

We say that the measure µ is invariant along the flow associated to M . Further-
more, the function M is continuous and along any generalized bicharacteristic the
matrix M is solution to a differential equation whose coefficients can be explicitly
computed in terms of the geometry and the different terms in the operator P .

For the differential equation which M satisfies, one can refer to [15, Section
3.2] for more details.

Remark 2.3.14. For a scalar wave equation, we know that the defect measure is
invariant along the general bicharacteristic flow.

Remark 2.3.15. Roughly speaking, in the result above, the norm of M describes
the damping of the measure µ, whereas the rotation component of M describes the
way the polarization of the measure (asymptotic polarization of the sequence (uk))
is turning.
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2.4 The controllability of a scalar wave equation
In this section, we provide a sketch proof for the controllability of a scalar wave
equation as we introduced in (2.2.1):

�Ku = f1ω in (0, T )× Ω,
u = 0 on (0, T )× ∂Ω,
u|t=0 = u0(x), ∂tu|t=0 = u1(x),

(2.4.1)

where we assume that f ∈ L2((0, T )× ω) and the initial data (u0, u1) ∈ H1
0 (Ω)×

L2(Ω). We consider the null controllability of this equation. The proof is based
on three steps as follows:

1. (HUM and observability) Applying the Hilbert uniqueness method, the con-
trollability property is equivalent to an observability inequality for the adjoint
system. To be more precise here, we only need to prove: ∃C > 0 such that
for any solutions of the adjoint equation:

�Kv = 0 in (0, T )× Ω,
v = 0 on (0, T )× ∂Ω,
v|t=0 = v0(x), ∂tv|t=0 = v1(x),

(2.4.2)

we have

||v0||2L2 + ||v1||2H−1 ≤ C

∫ T

0

∫
ω

|v|2dxdt. (2.4.3)

2. (High-frequency estimates) We first establish a weak observability inequality
as follows:

||v0||2L2 + ||v1||2H−1 ≤ C

(∫ T

0

∫
ω

|v|2dxdt+ ||v0||2H−1 + ||v1||2H−2

)
. (2.4.4)

We prove this inequality by the argument of contradiction. Suppose the
inequality (2.4.4) is false, there exists a sequence (vk,0, vk,1)k∈N in L2 ×H−1

such that

||vk,0||2L2 + ||vk,1||2H−1 = 1, (2.4.5)
||vk,0||2H−1 + ||vk,1||2H−2 → 0, k →∞ (2.4.6)∫ T

0

∫
ω

|vk|2dxdt→ 0, k →∞ (2.4.7)

where vk is the solution of (2.4.2) with initial data (vk,0, vk,1). Hence, there
exists a microlocal defect measure µ associated with the bounded sequence
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vk. According to the previous section, we know that µ is invariant along
the general bichacteristic flow. In addition, we know that µ|(0,T )×ω = 0 by
(2.4.7). Hence, we obtain µ ≡ 0. Combining with the energy conservation
law of the homogenerous wave equation (2.4.2), there is a controdiction with
the hypothesis (2.4.5). Therefore, we prove the weak observability inequality
(2.4.4).

3. (Low-frequency estimates) We use the weak observability inequality (2.4.4)
to prove the original observability (2.4.3). We also argue by contradiction.
Suppose that (2.4.3) is false, then, there exists a sequence (vk,0, vk,1)k∈N in
L2 ×H−1 such that

||vk,0||2L2 + ||vk,1||2H−1 = 1, (2.4.8)∫ T

0

∫
ω

|vk|2dxdt→ 0, k →∞ (2.4.9)

where vk is the solution of (2.4.2) with initial data (vk,0, vk,1). Since we
proved the weak observability inequality, we know that

1 = ||vk,0||2L2 + ||vk,1||2H−1 ≤ C

(∫ T

0

∫
ω

|vk|2dxdt+ ||vk,0||2H−1+||vk,1||2H−2

)
.

(2.4.10)
Let (v0, v1) be the weak limit of (vk,0, vk,1), i.e.(vk,0, vk,1) ⇀ (v0, v1) in L2 ×
H−1 and v be the solution of the adjoint equation (2.4.2) with initial data
(v0, v1). Since L2×H−1 7→ H−1×H−2 is compact, we know that ||vk,0||2H−1 +
||vk,1||2H−2 → ||v0||2H−1 + ||v1||2H−2 . As a consequence, let k tends to infinity,
we obtain that

1 ≤ C
(
||v0||2H−1+||v1||2H−2

)
. (2.4.11)

Then we analyze the space of the invisible solutions defined by

N (T ) = {(w0, w1) ∈ L2×H−1 : w(t, x) = 0, for t ∈ (0, T ), x ∈ ω}. (2.4.12)

Here w is a solution of the adjoint equation (2.4.2) with initial data (w0, w1).
Hence, (v0, v1) ∈ N (T ). Next, we prove that N (T ) = {0}. According to

(2.4.4), we know thatN (T ) has finite dimension. Define A =

(
0 1
−∆K 0

)
.

Then N (T ) is stable under the application of A . Therefore, N (T ) contains
an eigenvector of A , i.e. ∃λ ∈ C and (φ0, φ1) ∈ H1

0 × L2 such that A

(
φ0

φ1

)
= λ

(
φ0

φ1

)
, in Ω,

φ0 = 0, in ω.
(2.4.13)
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This is equivalent to: for λ ∈ C and φ0 ∈ H1
0{

−∆φ0 = λ2φ0, in Ω,
φ0 = 0, in ω. (2.4.14)

This is a classic unique continuation problem. Using Carleman estimates
(see [16]), we obtain that φ0 ≡ 0. Consequently, we know that N (T ) =
{0}. Therefore, we have (v0, v1) = (0, 0), which is a contradiction with the
hypothesis (2.4.11). Hence, we prove the observability inequality (2.4.3).

In summary, we first apply Hilbert uniqueness method to obtain the observability
inequality. Then for high-frequency regime, we prove a weak observability inequal-
ity by the microlocal analysis. At last, for low-frequency regime, it is equivalent to
proving a unique continuation property for some eigenfucntions. This is the basic
strategy for us to deal with the controllability of the wave equations.

2.5 Coupled wave systems

2.5.1 Coupled by the control function

In this section, we consider the interior simultaneous controllability problem of a
wave system with different speeds. One could find this result in my article [44].

A simple model

First we introduce a simple example as follows:
(∂2
t −∆)u1 = f1(0,T )(t)1ω(x)

(∂2
t − 2∆)u2 = f1(0,T )(t)1ω(x)

uj = 0 on (0, T )× ∂Ω, j = 1, 2,
uj(0, x) = u0

j(x) ∈ H1
0 , ∂tuj(0, x) = u1

j(x) ∈ L2, j = 1, 2.

(2.5.1)

Notice that these two wave equations are of different speeds and we use the same
control function f ∈ L2((0, T )× ω) to control both equations at the same time.

For our example (2.5.1), applying Hilbert uniqueness method, we only need to
prove an observability inequality

2∑
i=1

(||v0
i ||2L2 + ||v1

i ||2H−1) ≤ C

∫ T

0

∫
ω

|v1 + v2|2dxdt (2.5.2)

for solutions (v1, v2) of the adjoint system with initial data (v0
i , v

1
i ):{

(∂2
t −∆)v1 = 0

(∂2
t − 2∆)v2 = 0

(2.5.3)
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To prove the inequality (2.5.2), we first look at the high-frequency regime. Since
the two wave equations are of different speeds, then characteristic manifolds are
disjoint, which implies that ||v1 + v2||2L2 ≈ ||v1||2L2 + ||v2||2L2 in the high-frequency
regime. With the application of the microlocal defect measures, we know that for
high frequencies, observe the sum v1 + v2 is almost equivalent to observing each of
them. Then, we look at the low-frequency regime. It is equivalent to considering
a unique continuation problem for eigenfunctions as follows: only zero solutions
satisfy that 

−∆φ1 = λφ1 in Ω,
−2∆φ2 = λφ2 in Ω,
φ1 + φ2 = 0 in ω.

(2.5.4)

In this example, this property is easy to prove. Since the eigenfunctions of the
laplacian are analytic, we know that φ1 + φ2 ≡ 0 in the whole domain Ω. Then,
by adding two equations together, we obtain that ∆φ2 = 0. Combining with the
Dirichlet boundary condition, we know that φ2 ≡ 0, which implies that φ1 = −φ2 ≡
0. Hence, we are able to prove this simultaneous control problem. Therefore, we
conclude three features of this kind of problem:

1. Wave equations are of different speeds while we use the same control function
to control all these equations at the same time.

2. Considering the observability inequality, we use the localized norm (restricted
in subdomain ω) of the sum of solutions to control the full energy norm of
the initial data.

3. We need a unique continuation property for the eigenfunctions associated
with the wave system.

This motivates us to consider the generalisation of this example.

Simultaneous control of wave systems

In my article [44], we consider the exact controllability on an open domain Ω of
wave systems with space varying and different speeds coupled by a single con-
trol function acting on a open subset ω. To be more precise, we consider the
simultaneous interior controlllability for the following wave system:

�K1u1 = b1f1(0,T )(t)1ω(x) in (0, T )× Ω,
�K2u2 = b2f1(0,T )(t)1ω(x) in (0, T )× Ω,
...
�Knun = bnf1(0,T )(t)1ω(x) in (0, T )× Ω,
uj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
uj(0, x) = u0

j(x), ∂tuj(0, x) = u1
j(x), 1 ≤ j ≤ n.

(2.5.5)
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Here, we choose Ki(1 ≤ i ≤ n) to be n different symmetric positive definite
matrices, which is a generalization of n different wave speeds of different constant
metrics. In addition, it is also important that we apply the same control function
f on each equation. bi are n nonzero constant coefficients. We could see this
example as a special case where the coupling only appears in the control function.
For this system, we are able to prove the partial controllability result as follows:

Theorem 2.5.1. Given T > 0, suppose that:

1. (ω, T, pKi) satisfies GCC, i = 1, 2, · · · , n,

2. K1 > K2 > · · · > Kn in ω,

3. Ω has no infinite order of tangential contact on the boundary.

Then, there exists a finite dimensional subspace E ⊂ (H1
0 (Ω)× L2(Ω))n such that

the system (2.5.5) is P−exactly controllable, where P is the orthogonal projector
on E⊥.

As we have presented before, in order to study the low frequencies, we need to
introduce the notion of unique continuation of eigenfunctions.

Definition 2.5.2. We say the system Equation (3.1.2) satisfies the unique contin-
uation of eigenfunctions if the following property holds: ∀λ ∈ C, the only solution
(φ1, · · · , φn) ∈ (H1

0 (Ω))n of
−∆K1φ1 = λ2φ1 in Ω,
−∆K2φ2 = λ2φ2 in Ω,
· · ·
−∆Knφn = λ2φn in Ω,
b1κ1φ1 + · · ·+ bnκnφn = 0 in ω,

is the zero solution (φ1, · · · , φn) ≡ 0.

Remark 2.5.3. As we present in the section 3.5.4, the unique continuation prop-
erty does not hold true in some cases.

Hence, we are able to obtain the exact/null controllability as follows:

Theorem 2.5.4. Given T > 0, suppose that:

1. (ω, T, pKi) satisfies GCC, i = 1, 2, · · · , n,

2. K1 > K2 > · · · > Kn in ω,

3. Ω has no infinite order of tangential contact on the boundary,
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4. The system (2.5.5) satisfies the unique continuation property of eigenfunc-
tions.

Then the system (2.5.5) is exactly controllable in (H1
0 (Ω)× L2(Ω))n.

As we present in the previous section, we prove this theorem by similar proce-
dure. First, we apply the Hilbert Uniqueness Method, and obtian the observability
inequality: ∃C > 0 such that for any solution of the adjoint system:

�K1v1 = 0 in (0, T )× Ω,
�K2v2 = 0 in (0, T )× Ω,
...
�Knvn = 0 in (0, T )× Ω,
vj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
(v1(0, x), ∂tv1(0, x), · · · , vn(0, x)∂tvn(0, x)) = V 0,

(2.5.6)

where V 0 ∈ (L2 ×H−1)n, we have

C

∫ T

0

∫
ω

|b1κ1v1 + · · ·+ bnκnvn|2dxdt ≥ ||V 0||2(L2×H−1)n . (2.5.7)

Then we only need to prove this observability inequality (2.5.7). Looking at the
high-frequency, we prove a weak observability estimate:

||V 0||2(L2×H−1)n ≤ C

(∫ T

0

∫
ω

|
n∑
j=1

bjκjvj|2dxdt+ ||V 0||2(H−1×H−2)n

)
. (2.5.8)

Using the argument by contradiction, we assume that the above inequality was
false, we could obtain a sequence (V 0,k)k∈N such that

||V 0,k||2(L2×H−1)n = 1, (2.5.9)

∫ T

0

∫
ω

|b1κ1v
k
1 + · · ·+ bnκnv

k
n|2dxdt→ 0, k →∞, (2.5.10)

and
||V 0,k||2(H−1×H−2)n → 0, k →∞. (2.5.11)

Here we use vki (1 ≤ i ≤ n) to denote the corresponding solution of the system
Equation (2.5.6) with the initial data V 0,k. Since we have the assumption 2, we
know that the characteristic manifolds of each wave equation are disjoint, which
implies that∫ T

0

∫
ω

|b1κ1v
k
1 + · · ·+ bnκnv

k
n|2dxdt ≈

n∑
i=1

∫ T

0

∫
ω

|biκivki |2dxdt (2.5.12)
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Hence, we know that each defect measure µi associated with vki is zero through the
application of the propagation of the defect measures and the Geometric control
condition. This provides a contradiction with the normalized norm of initial data,
i.e. ||V 0,k||2(L2×H−1)n = 1. Then we combine the assumption (4), we know that
the observability inequality is true. This gives us the result of the exact/null
controllability of the system (2.5.5).

Some results on unique continuation properties

As we can see in the simple example, the unique continuation properties defined in
Definition 2.5.2 hold for constant coefficient metrics. But we could also construct
a counter-example such that this unique continuation property does not hold. In
dimension 1, we assume that the metric g = c(x)dx2. Then ∆g = 1

c
d2

dx2 − c′

2c2
d
dx
.

Fix the open interval (0, π) and the subinterval (a, b) ⊂ (0, π)(a > π
2
). Now we

consider the unique continuation problem:
u′′1 = −λ2u1,

∆gu2 = −λ2u2,
u1 + u2 = 0 in (a, b),
u1, u2 ∈ H1

0 ((0, π)).

(2.5.13)

We have the following result:

Theorem 2.5.5. There exists a smooth Riemannian metric g = c(x)dx2, and two
eigenfunctions u1, u2 of ∆g and d2

dx2 on (0, π) associated with eigenvalue 1 such
that u1 + u2 = 0, in (a, b) ⊂ (0, π) and u1 + u2 6≡ 0 in (0, π).

The readers can find the detailed construction of this counter-example in the
section 3.5. Looking at the system 2.5.13, we consider the intersection of the
spectrum of two Laplacians with different metrics. Let us define the space of all
smooth metrics on the open interval (0, π) by M1. We are able to prove the
following proposition:

Proposition 2.5.6. In dimension 1, suppose that we fix the Laplacian ∆ = d2

dx2 in
(0, π) with its spectrum σ(∆). Then the set Guc = {g ∈ M1 : σ(∆g) ∩ σ(∆) = ∅}
is residual inM1.

Roughly speaking, we are able to find “many” metrics in the sense of generic
properties such that the spectrum of two Laplacians with different metrics are
disjoint. Therefore, we obtain the following corollary immediately:

Corollary 2.5.7. Fix ∆ = d2

dx2 , for every metric g ∈ Guc, the system (2.5.13) has
a unique solution u1 = u2 = 0.
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That is to say, the unique continuation property is true “genericly”. In addition,
in dimension 2, we can also obtain the similar result:

Proposition 2.5.8. In dimension 2, suppose that we fix one metric g0 and the
associated Laplacian ∆g0 with its spectrum σ(∆g0). Then the set Guc = {g ∈M2 :
σ(∆g) ∩ σ(∆g0) = ∅} is residual inM2.

HereM2 is the space of all smooth metrics on the open domain Ω ⊂ R2. And
for proof details, we refer to the section 3.5.4.

Comments

There are two crucial parts in this proof. We need to get the microlocal information
of each solution through the constraints on the sum of solutions. The other one is
to prove the unique continuation property. In the first part, we mainly rely on the
facts that the characteristic manifolds with different speeds are disjoint. Hence, in
the high-frequency regime, we could distinguish every solution among the sum of
them. For the second part, the main difficulty is that we have n(n ≥ 1) equations
but with only one constraint to solve the unique continuation problem. In the
constant coefficient case, the laplacians commute with each other. So we could
apply the ∆ for n− 1 times to obtain n− 1 constraints

∑
i ∆

kφi = 0(1 ≤ k ≤ n)
in ω. Then we could reduce this problem into a unique continuation problem for
a single equation. However, for general metrics, the laplacians do not commute
with each other. Then this method does not work.

2.5.2 Coupled by a block-cascade structure

In this section, we mainly consider the Laplacian with constant coefficients. This
is a joint work with Pierre Lissy. In this article, we proved the controllability of a
coupled wave system with a single control and different speeds.

Motivations

To begin with, we introduce a simple example as follows:
(∂2
t −∆)u1 + u2 = 0 in (0, T )× Ω,

(∂2
t − 2∆)u2 + u3 = 0 in (0, T )× Ω,

(∂2
t − 2∆)u3 = f1ω in (0, T )× Ω,

(2.5.14)

with the Dirichlet boundary condition and some initial data, where f is a L2

function supported in (0, T ) × ω. Compared with (2.5.1), we consider a block-
cascade coupling structure for the solutions. Notably, the control f is only acting
directly on u3, which itself acts on u2 while u1 is controlled through u2.
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For this example system, the controllability from zero is equivalent to the null
controllability. Therefore, we begin with zero initial conditions. We first observe a
regularity gap among the solutions, i.e. (u1, u2, u3) ∈ H4×H2×H1. In fact, since
u3 satisfies a wave equation with a source term f ∈ L1((0, T ), L2), it is classical that
there exists a unique solution u3 ∈ C1([0, T ], H1

0 )∩C0([0, T ], L2). Since u2 satisfies
a wave equation with a source term −u3, then u2 ∈ C1([0, T ], H2)∩C0([0, T ], H1

0 ).
For u1, similarly, we obtain that u1 ∈ C1([0, T ], H3)∩C0([0, T ], H2). Now, we need
to state an extra regularity property for u1. Applying the d’Alembert operator
�2 = ∂2

t − 2∆ on both sides of the equation of �1u1 = (∂2
t − ∆)u1 = −u2, we

obtain that
�2�1u1 = −�2u2.

Since �2u2 = −u3, then we obtain that �2�1u1 = u3. We consider that �2u1

satisfies a wave equation with a source term u3. Therefore, we know that �2u1 ∈
C1([0, T ], H2)∩C0([0, T ], H1

0 ). Since �1u1 = −u2 ∈ C1([0, T ], H2)∩C0([0, T ], H1
0 ),

we know that ∆u1 = �1u1 − �2u1 ∈ C1([0, T ], H2) ∩ C0([0, T ], H1
0 ). As a conse-

quence, we know u1 ∈ C1([0, T ], H4)∩C0([0, T ], H3). Hence, we notice a regularity
gap (u1, u2, u3) ∈ H4 ×H2 ×H1. One can refer to [20] for a different proof.

In addition, with zero initial conditions, we also notice that there is a compat-
ibility condition for this control problem, i.e. (−∆)2u1 + ∆u2 ∈ H1

0 . In fact, let us
first do some reformulation for the system. Define the transform S by

S

 u1

u2

u3

 =

 v1

v2

v3

 ,

where 
v1 = D3

t u1,
v2 = Dtu2,
v3 = u3.

(2.5.15)

Moreover, (v1, v2, v3) satisfies the following system:
�1v1 +D2

t v2 = 0 in (0, T )× Ω,
�2v2 +Dtv3 = 0 in (0, T )× Ω,
�2v3 = f in (0, T )× Ω.

(2.5.16)

Using the identity
−D2

t = 2�1 −�2, (2.5.17)

we obtain that
D2
t v2 = −(2�1 −�2)v2. (2.5.18)

Using(2.5.18) in the first equation of (2.5.16), we also deduce that

�1(v1 − 2v2)−Dtv3 = 0. (2.5.19)

51



2.5. COUPLED WAVE SYSTEMS

Now, let us define
y = Dtv1 − 2Dtv2. (2.5.20)

Then, by (2.5.20) and (2.5.19), we obtain that

�1y −D2
t v3 = 0. (2.5.21)

We also remark that by using (2.5.17),

−D2
t v3 = (2�1 −�2)v3. (2.5.22)

Hence, we deduce that
�1(y + 2v3) = f. (2.5.23)

Let us now express y with respect to the original variables u1, u2, u3. From (2.5.20),
(2.5.15) and the first equation of (2.5.14), we obtain that

y = Dtv1 − 2Dtv2

= D4
t u1 − 2D2

t u2

= D2
t (D

2
t u1 − 2u2)

= D2
t (−∆u1 + u2 − 2u2)

= D2
t (−∆u1 − u2).

Combining with the second equation of (2.5.14), we obtain

y = (−∆)2u1 + ∆u2 − u3.

Now, we define
ỹ = y + 2u3.

Then, ỹ satisfies
�1ỹ = f. (2.5.24)

With zero initial conditions, we obtain that ỹ ∈ H1
0 , i,e, (−∆)2u1 + ∆u2 ∈ H1

0 .
Considering the regularity of u1 and u2, we know that (u1, u2) ∈ H4×H2. Hence,
we can only obtain (−∆)2u1 +∆u2 ∈ L2. Therefore, we notice a regularity gap be-
tween these two conditions. This gap implies that when we choose the appropriate
state spaces, we need to consider not only the regularity of the solutions but also
the compatibility conditions associated with the coupling structure. This is quite
different from the system without coupling, and even different from the wave sys-
tem coupled by the same speed or coupled parabolic systems. To our knowledge,
this is one feature for such kind of coupled wave systems. This motivates us to
consider a more general system with the same type of coupling structure.
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The controllability for a wave system coupled with different speeds

We aim to deal with some controllability properties of the following type of coupled
wave systems: (∂2

t −D∆)U + AU = b̂f1ω in (0, T )× Ω,
U = 0 on (0, T )× ∂Ω,
(U, ∂tU)|t=0 = (U0, U1) in Ω,

(2.5.25)

with here

D =

(
d1Idn1 0

0 d2Idn2

)
n×n

, A =

(
0 A1

0 A2

)
n×n

, and b̂ =

(
0
b

)
n×1

, (2.5.26)

where n = n1 + n2 and d1 6= d2. A1 ∈ Mn1,n2(R) and A2 ∈ Mn2(R) are two given
coupling matrices and b ∈ Rn2 .

For j = 1, 2, we use Uj =

 uj1
...
ujnj

 to denote the solutions corresponding to

the speed dj respectively. Let us emphasize the following important and crucial
properties of System (2.5.25): all coefficients are constant, the coupling is in a
block-cascade structure (notably, the control f is only acting directly on U2, which
itself acts on U1 through the matrix A1), and we restrict to the case of a scalar
control (i.e. f ∈ L2((0, T ),Rm) with m = 1).

Equivalent operator Kalman rank condition

In the following proposition, we give an equivalent statement of the operator
Kalman rank condition associated with System (2.5.25), which is very specific
to our particular coupling structure and the fact that we have a single control.

Proposition 2.5.9. We use the same notations as in Definition 2.5.26. We denote
by K = [−D∆+A|B̂] the Kalman operator associated with System (2.5.25). Then,
Ker(K∗) = {0} is equivalent to satisfying all the following conditions:

1. n1 = 1;

2. (A2, B) satisfies the usual Kalman rank condition (See Definition 2.2.3);

3. Assume that A1 = α = (α1, · · · , αn2). Then ∀λ ∈ σ(−∆), α satisfies

α

(
n2−2∑
k=0

(d1 − d2)kλk
n2∑

j=k+1

ajA
j−1−k
2 + (d1 − d2)n2−1λn2−1Idn2

)
b̂ 6= 0,

(2.5.27)
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where (aj)0≤j≤n2 are the coefficients of the the characteristic polynomial of
the matrix A2, i.e. χ(X) = Xn2 +

∑n2−1
j=0 ajX

j, with the convention that
an2 = 1.

With this equivalent condition, we are able to simplify the system into

�1u
1
1 +

∑s
j=1 αsu

2
j = 0 in (0, T )× Ω,

�2u
2
1 + u2

2 = 0 in (0, T )× Ω,
...
�2u

2
n2−1 + u2

n2
= 0 in (0, T )× Ω,

�2u
2
n2
−
∑n2

j=1 an2+1−ju
2
j = f1ω in (0, T )× Ω,

u1
1 = 0, u2

j = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n2,

(u1
1, u

2
1, · · · , u2

n2
)|t=0 = (u1,0

1 , u2,0
1 , · · · , u2,0

n2
) in Ω,

(∂tu
1
1, ∂tu

2
1, · · · , ∂tu2

n2
)|t=0 = (u1,1

1 , u2,1
1 , · · · , u2,1

n2
) in Ω.

(2.5.28)

Here we take n1 = 1, A1 = (α1, · · · , αs, 0, · · · , 0) and

A2 =


0 1 0 0

0 0
. . . 0

... . . . . . . 1
−an · · · −a2 −a1

 , and b =


0
...
0
1


Appropriate state spaces

Since we consider the control problem in a domain Ω with boundary, it is natural
for us to introduce the following Hilbert spaces Hs

Ω(∆).

Definition 2.5.10. We denote by (β2
j )j∈N∗ the non-decreasing sequence of (pos-

itive) eigenvalues of the Laplace operator −∆ with Dirichlet boundary condition,
repeated with multiplicity, and (ej)j∈N∗ an orthonormal basis of L2(Ω) made of
eigenfunctions associated with (β2

j )j∈N∗:

−∆ej = β2
j ej, ||ej||L2 = 1.

For any s ∈ R, we denote by Hs(Ω) the usual Sobolev space and by Hs
Ω(∆) the

Hilbert space defined by

Hs
Ω(∆) = {u =

∑
j∈N∗

ajej;
∑
j∈N∗

(1 + β2
j )
s|aj|2 <∞}. (2.5.29)

Under this particular structure of coupling, we introduce appropriate com-
patibility conditions for System (4.1.6). For r = 0, 1, and (u, v1, · · · , vn2) ∈
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Hn2−s+2+r
Ω (∆D) × Hn2−1+r

Ω (∆D) × · · · × Hr
Ω(∆D), let us define a special function

U r
comp by

U r
comp =

(
(−d1∆)n2−s+1u

+

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lvj+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lvj+k+l

)
.

(2.5.30)
Using this special function U r

comp, let us denote by Hs
r the following space:

Hs
r = {(u, v1, · · · , vn2) ∈ Hn2−s+2+r

Ω (∆D)×Hn2−1+r
Ω (∆D)× · · · ×Hr

Ω(∆D)

s.t. U r
comp ∈ Hr

Ω(∆D)}.
(2.5.31)

Definition 2.5.11 (State space). The state space for System (4.4.1) is defined by

H1 ×H0.

The two conditions

U1
comp(u

1,0
1 , u2,0

1 , · · · , u2,0
n2

) ∈ H1
Ω(∆D),

U0
comp(u

1,1
1 , u2,1

1 , · · · , u2,1
n2

) ∈ H0
Ω(∆D)

are called the compatibility conditions for the controllability of System (4.4.1).

With these well-prepared spaces, we obtain the following result:

Theorem 2.5.12. Given T > 0, suppose that:

1. (ω, T, pdi) satisfies GCC, i = 1, 2.

2. Ω has no infinite order of tangential contact with the boundary.

3. The Kalman operator K = [−D∆ + A|B̂] associated with System (4.1.1)
satisfies the operator Kalman rank condition, i.e. Ker(K∗) = {0}.

Then the system (4.1.1) is exactly controllable.

We prove the above theorem within three steps.

1. At the first, we simplify the system (2.5.25), using the Brunovský normal
form. This is based on the Proposition 2.5.9 and we only need to prove the
exact/null controllability for the simplified system (2.5.28).
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2. At the second step, we use the iteration schemes to obtain the compatibility
conditions associated with the coupling structure in the system (2.5.25).
Therefore, we prepare the appropriate state spaces for the controllability of
the system (2.5.28).

3. In the final step, we use Hilbert uniqueness method to derive the observ-
ability inequality and then we follow the similar procedure as we did in
the previous section 2.5.1. We establish a weak observability inequality and
prove this weak observability inequality by the argument of contradiction
and the propagation of the defect measures for systems. At last, the unique
continuation property is given by the Kalman rank condition.

Comments

The main difficulty here is that the block-cascade coupling increases the difficulty
for us to describe the proper Hilbert spaces for the states. As we presented in the
example, only describing the regularity of each solution is not enough to construct
the state spaces. The crucial part in the proof of the main result is to obtain
the compatibility conditions associated with the coupling structure. The coupling
with different speeds play a very important role in this problem.

2.5.3 Some comments on further developments

Based on the previous results, we already solved two special cases of the interior
controllability for the coupled wave systems. Then, we could think about some
more general coupling structures. For example, in the system (2.5.25) with

D =

(
d1Idn1 0

0 d2Idn2

)
n×n

, A =

(
A11 A12

A21 A22

)
n×n

, and b̂ =

(
b1

b2

)
n×m

,

(2.5.32)
In this case, the coupling is in a very general form and moreover, we consider some
multi-control functions (i.e. f ∈ L2((0, T ),Rm) with m > 1). In such example,
there are two types of difficulties. The first one is to find a algebraic equivalent
condition for the abstract operator Kalman rank condition to simplify the coupling
structure. The second one is to construct the appropriate state spaces, especially
find the compatibility conditions under this setting.
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Chapter 3

Simultaneous Control of Wave
Systems

3.1 Introduction
Let Ω ⊂ Rd, d ∈ N∗, be a bounded, and smooth domain. For positive constants α
and β, let kij(x) : Ω→ R, 1 ≤ i, j ≤ d be smooth functions which satisfy:

kij(x) = kji(x), α|ξ|2 ≤
∑

1≤i,j≤d

kij(x)ξiξj ≤ β|ξ|2,∀x ∈ Ω,∀ξ ∈ Rd. (3.1.1)

Define K(x) to be the symmetric positive definite matrix of coefficients kij(x).
Moreover, we define the density function κ(x) = 1√

det(K(x))
. We also define the

Laplacian by ∆K = 1
κ(x)

div(κ(x)K∇·) on Ω and the d’Alembert operator �K =

∂2
t − ∆K on Rt × Ω. We assume that ω is a nonempty open subset of Ω. We

consider the interior simultaneous controllability problem for the following wave
system: 

�K1u1 = b1f1(0,T )(t)1ω(x) in (0, T )× Ω,
�K2u2 = b2f1(0,T )(t)1ω(x) in (0, T )× Ω,
...
�Knun = bnf1(0,T )(t)1ω(x) in (0, T )× Ω,
uj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
uj(0, x) = u0

j(x), ∂tuj(0, x) = u1
j(x), 1 ≤ j ≤ n.

(3.1.2)

Here, we choose Ki(1 ≤ i ≤ n) to be n different symmetric positive definite
matrices. The state of the system is (u1, ∂tu1, · · · , un, ∂tun) and f is our control
function. bi are n nonzero constant coefficients. In this chapter, we mainly consider
the exact controllability for the system Equation (3.1.2) given by the following
definition.
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Definition 3.1.1 (Exact Controllability). We say that the system Equation (3.1.2)
is exactly controllable if for any initial data (u0

1, u
1
1, · · · , u0

n, u
1
n) ∈ (H1

0 (Ω)×L2(Ω))n

and any target data (U0
1 , U

1
1 , · · · , U0

n, U
1
n) ∈ (H1

0 (Ω) × L2(Ω))n, there exists a
control function f ∈ L2((0, T ) × ω) such that the solution of the system Equa-
tion (3.1.2) with initial data (u1, ∂tu1, · · · , un, ∂tun)|t=0 = (u0

1, · · · , u1
n) satisfies

(u1, ∂tu1, · · · , un, ∂tun)|t=T
= (U0

1 , · · · , U1
n).

Moreover, we also consider the partial exact controllability for the system Equa-
tion (3.1.2) given by the following definition.

Definition 3.1.2. Let Π be a projection operator of (H1
0 (Ω) × L2(Ω))n. We say

that the system Equation (3.1.2) is Π−exactly controllable if for any initial data
(u0

1, u
1
1, · · · , u0

n, u
1
n) ∈ (H1

0 (Ω)×L2(Ω))n and any target data (U0
1 , U

1
1 , · · · , U0

n, U
1
n) ∈

(H1
0 (Ω) × L2(Ω))n, there exists a control function f ∈ L2((0, T ) × ω) such that

the solution of Equation (3.1.2) with initial data (u1, ∂tu1, · · · , un, ∂tun)|t=0 =
(u0

1, u
1
1, · · · , u0

n, u
1
n) satisfies

Π(u1, ∂tu1, · · · , un, ∂tun)|t=T = Π(U0
1 , U

1
1 , · · · , U0

n, U
1
n).

If we only impose that Π(u1, ∂tu1, · · · , un, ∂tun)|t=T = 0, we say that the system
Equation (3.1.2) is Π−null controllable.

Proposition 3.1.3. For System Equation (3.1.2), the Π−null controllability is
equivalent to the Π−exact controllability.

Proof. We follow closely the proof of [17, Theorem 2.41]. It is clear that (Π−exact
controllability) =⇒ (Π−null controllability). So we focus on the proof of the
converse. We define the operator

A =


0 −1 · · · 0

−∆K1 0 · · · 0
...

... 0 −1
0 0 −∆Kn 0

 . (3.1.3)

The system Equation (3.1.2) is equivalent to

∂ty = −A y + B̃f1(0,T )(t)1ω(x), y|t=0 = y(0), (3.1.4)

where

y =


u1

∂tu1
...
un
∂tun

 , y(0) =


u0

1

u1
1
...
u0
n

u1
n

 and B̃ =


0
b1
...
0
bn

 .
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Let us consider S(t) the semi-group generated by A . Let y0 ∈ (H1
0 (Ω)× L2(Ω))n

and y1 ∈ (H1
0 (Ω) × L2(Ω))n. Since the system Equation (3.1.2) is Π−null con-

trollable, we obtain that there exists f such that the solution ỹ of the Cauchy
problem

∂tỹ = −A ỹ + B̃f1(0,T )(t)1ω(x), y|t=0 = y0 − S(−T )y1 (3.1.5)
satisfies Πỹ(T ) = 0. For the Cauchy problem

∂ty = −A y + B̃f1(0,T )(t)1ω(x), y|t=0 = y0, (3.1.6)

the solution y is given by

y(t) = ỹ(t) + S(t− T )y1, ∀t ∈ [0, T ]. (3.1.7)

Hence, we obtain that y(T ) = ỹ(T )+y1. In particular, we know that Πy(T ) = Πy1

since Πỹ(T ) = 0. We now obtain the Π−exact controllability for the system
Equation (3.1.2).

According to the Hilbert Uniqueness Method of J.-L. Lions [38], the controlla-
bility property is equivalent to an observability inequality for the adjoint system.
In particular, when we focus on our system Equation (3.1.2), the exact controlla-
bility is equivalent to proving the following observability inequality: ∃C > 0 such
that for any solution of the adjoint system:

�K1v1 = 0 in (0, T )× Ω,
�K2v2 = 0 in (0, T )× Ω,
...
�Knvn = 0 in (0, T )× Ω,
vj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
vj(0, x) = v0

j (x), ∂tvj(0, x) = v1
j (x), 1 ≤ j ≤ n,

(3.1.8)

we have

C

∫ T

0

∫
ω

|b1κ1v1 + · · ·+ bnκnvn|2dxdt ≥
n∑
i=1

(||v0
i ||2L2 + ||v1

i ||2H−1). (3.1.9)

For the partial controllability, we have a similar result. The Π−exact controlla-
bility of the system Equation (3.1.2) is equivalent to proving the following observ-
ability inequality: ∃C > 0 such that for any solution of the adjoint system:

�K1v1 = 0 in (0, T )× Ω,
�K2v2 = 0 in (0, T )× Ω,
...
�Knvn = 0 in (0, T )× Ω,
vj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
(v1(0, x), ∂tv1(0, x), · · · , vn(0, x)∂tvn(0, x)) = Π∗V 0,

(3.1.10)
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where V 0 ∈ (L2 × H−1)n and Π∗ is the adjoint operator of the projector Π, we
have

C

∫ T

0

∫
ω

|b1κ1v1 + · · ·+ bnκnvn|2dxdt ≥ ||Π∗V 0||2(L2×H−1)n . (3.1.11)

This is an easy consequence of Proposition 3.1.3, the conservation of energy for
system Equation (3.1.2) and [7, Chapter 4, Proposition 2.1].

In order to study the observability inequality, a classical method is to follow
the abstract three-step process initialized by Rauch and Taylor [46](see also [10]).
It can be detailed as follows:

• Firstly, get the microlocal information on the observable region. Argue by
contradiction to obtain different kinds of convergence in subdomain (0, T )×ω
and the whole domain (0, T )× Ω.

• Secondly, use microlocal defect measure (which is due to Gérard [23] and
Tartar [47]), or propagation of singulaties theorem (see [26] Section 18.1) to
prove a weak observability estimate:

n∑
i=1

(||v0
i ||2L2 + ||v1

i ||2H−1)

≤ C(

∫ T

0

∫
ω

|
n∑
j=1

bjκjvj|2dxdt+
n∑
i=1

(||v0
i ||2H−1 + ||v1

i ||2H−2)).

• Thirdly, use unique continuation properties of eigenfunctions to obtain the
original observability inequality Equation (3.1.9).

For the high frequency estimates, a very natural condition is to assume that the
control set satisfies the Geometric Control Condition(GCC).

Definition 3.1.4. For ω ⊂ Ω and T > 0, we shall say that the pair (ω, T, pK)
satisfies GCC if every general bicharacteristic of pK meets ω in a time t < T ,
where pK is the principal symbol of �K.

We will give the definition of bicharacteristics in Section 3.3. This condition
was raised by Bardos, Lebeau, and Rauch [9] when they considered the controlla-
bility of a scalar wave equation and has now become a basic assumption for the
controllability of wave equations. In [14], the authors show that the geometric con-
trol condition is a necessary and sufficient condition for the exact controllability of
the wave equation with Dirichlet boundary conditions and continuous boundary
control functions. In order to study the low frequencies, we need to introduce the
notion of unique continuation of eigenfunctions.
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Definition 3.1.5. We say the system Equation (3.1.2) satisfies the unique contin-
uation of eigenfunctions if the following property holds: ∀λ ∈ C, the only solution
(φ1, · · · , φn) ∈ (H1

0 (Ω))n of
−∆K1φ1 = λ2φ1 in Ω,
−∆K2φ2 = λ2φ2 in Ω,
· · ·
−∆Knφn = λ2φn in Ω,
b1κ1φ1 + · · ·+ bnκnφn = 0 in ω,

is the zero solution (φ1, · · · , φn) ≡ 0.

There is a large literature on the controllability and observability of the wave
equations. Several techniques have been applied to derive observability inequalities
in various situations. This chapter is mainly devoted to multi-speed wave systems
coupled by the control functions only. For other interesting situations, we list some
of the existing results and references:

• For single wave equation, it is by now well-known that Bardos, Lebeau,
and Rauch [10] use microlocal analysis to prove the Equation (3.1.9)-type
observability inequality for a scalar wave equation. Other approaches for
proving it can also be found in the literature, for example, using multipliers
[38, 29], using Carleman estimates [25, 11], or completely constructive proof
[30], etc.

• Although we now have a better picture on the controllabilty of a single wave
equation, the controllability of systems of wave equations is still not totally
understood. To our knowledge, most of the references concern the case of
systems with the same principal symbol. Alabau-Boussouira and Léautaud
[5] studied the indirect controllability of two coupled wave equations, in which
their controllability result was established using a multi-level energy method
introduced in [2], and also used in [3, 4]. Liard and Lissy [37], Lissy and
Zuazua [40] studied the observability and controllability of the coupled wave
systems under the Kalman type rank condition. Moreover, we can find other
controllability results for coupled wave systems, for example, Cui, Laurent,
and Wang [19] studied the observability of wave equations coupled by first
or zero order terms on a compact manifold. The microlocal defect measure
when dealing with the single wave equation can also be extended to a system
case. One can refer to Burq and Lebeau for the microlocal defect measure
for systems [15].

• As for multi-speed case, Dehman, Le Roussau, and Léautaud considered
two coupled wave equations with multi-speeds in [21]. More related work
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is given by Tebou [48], in which the author considered the simultaneous
controllability of constant multi-speed wave system and derived some result
in a semilinear setting in [49].

3.1.1 Plan of the chapter

The chapter is organized as follows. Our main results are in Section 3.2 and
Section 3.3 is devoted to introducing some geometric preliminaries. We include
the descriptions of the boundary points, and give the precise definition of general
bicharacteristics and the order of tangential contact with the boundary.

In Section 3.4, we focus on the high frequency estimates. Subsection 3.4.1
is devoted to introducing the microlocal defect measure and its basic properties,
which is also the main tool for our proof. Subsection 3.4.2 deals with the partial
controllability, and Subsection 3.4.3 is aimed to recover the exact controllability
result in the whole energy space of initial conditions with the help of the unique
continuation properties of eigenfunctions. In these two sections, we prove the
Theorem 3.2.1, and Theorem 3.2.5 respectively.

In Section 3.5, we plan to deal with low frequency estimates, mainly discussing
about the unique continuation properties of eigenfunctions. Subsection 3.5.1 pro-
vides a counterexample to show that only assuming the hypotheses in Theo-
rem 3.2.1 cannot ensure the unique continuation properties of eigenfunctions.
Then, we add some stronger assumptions to obtain the unique continuation prop-
erty. The first attempt is to require an analyticity condition, which is the exam-
ple in Proposition 3.5.3. The other attempt is to require constant coefficients in
Subsection 3.5.2 and Subsection 3.5.3, which is stated in Theorem 3.2.8. Subsec-
tion 3.5.4 is about generic properties of metrics which ensure the unique continu-
ation in dimension 1 and 2.

In Section 3.6, we deal with the constant coefficient case with multiple control
functions. We also discuss the corresponding Kalman rank condition in this setting.

In Section 3.7, we include the proof of the equivalent condition of the Kalman
rank condition in the case of multiple control functions.

3.1.2 Ideas of the proof

In our chapter, we prove the controllability result by applying the Hilbert unique-
ness method to prove the observability inequality of the adjoint system. In order
to study the observability inequality, we always use an argument by contradic-
tion. First, we try to prove a weak observability inequality by adding some low
frequency part. To obtain the original observability inequality, we need to analyse
the invisible solutions in the subdomain ω×(0, T ) by proving the unique continua-
tion properties of eigenfunctions. In section 4, we discuss some generic properties.
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We follow the ideas given by Uhlenbeck [51], using the transversality theorem to
obtain generic properties.

3.2 Main results
In this chapter, we mainly study the exact controllability for the system Equa-
tion (3.1.2) and discuss the optimality of the given conditions. On the other hand,
when we consider the constant coefficient case, we associate the controllability
with the Kalman rank condition. Instead of considering the exact controllability,
we can only consider the high frequency estimates to obtain a partial result. One
can also see similar finite codimensional controllability results, for instance, in [19]
and [41].

Theorem 3.2.1. Given T > 0, suppose that:

1. (ω, T, pKi) satisfies GCC, i = 1, 2, · · · , n,

2. K1 > K2 > · · · > Kn in ω,

3. Ω has no infinite order of tangential contact on the boundary.

Then, there exists a finite dimensional subspace E ⊂ (H1
0 (Ω)× L2(Ω))n such that

the system Equation (3.1.2) is P−exactly controllable, where P is the orthogonal
projector on E⊥.

We will explain the concept of the order of contact in the Section 3.3.

Remark 3.2.2. We say that K1 > K2 in ω if and only if ∀x ∈ ω, ∀ξ ∈ Rd and
ξ 6= 0, (ξ,K1(x)ξ) > (ξ,K2(x)ξ), where (·, ·) denotes the inner product of Rd.

Remark 3.2.3. The Assumption (2) can be generalized as follows: let σ be a
permutation of {1, 2, · · · , n}, Kσ(1) > Kσ(2) > · · · > Kσ(n) in ω.

Remark 3.2.4. The same result holds for the laplacian operator

∆K,κ =
1

κ(x)
div(κ(x)K(x)∇·),

where we only assume that κ ∈ C∞(Ω) without the restriction κ(x) = 1√
det(K(x))

.

To obtain the exact controllability, we need more assumptions on the low fre-
quency part.

Theorem 3.2.5. Given T > 0, suppose that:
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1. (ω, T, pKi) satisfies GCC, i = 1, 2, · · · , n,

2. K1 > K2 > · · · > Kn in ω,

3. Ω has no infinite order of tangential contact on the boundary,

4. The system Equation (3.1.2) satisfies the unique continuation property of
eigenfunctions.

Then the system Equation (3.1.2) is exactly controllable in (H1
0 (Ω)× L2(Ω))n.

Now, we consider the particular case of constant coefficients. Define the diag-

onal matrix D =

 d1

. . .
dn

 and B =

 b1
...
bn

. We use ∆ to denote the

canonical Laplace operator. Now we consider the simultaneous control problem
for the system:

∂2
tU −D∆U = Bf1(0,T )(t)1ω(x) in (0, T )× Ω, (3.2.1)

where U =

 u1
...
un

. This system can be written as



(∂2
t − d1∆)u1 = b1f1(0,T )(t)1ω(x) in (0, T )× Ω,

...
(∂2
t − dn∆)un = bnf1(0,T )(t)1ω(x) in (0, T )× Ω,

uj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
uj(0, x) = u0

j(x), ∂tuj(0, x) = u1
j(x), 1 ≤ j ≤ n.

First, we introduce the Kalman rank condition for the system Equation (3.2.1).

Definition 3.2.6 (Kalman rank condition). Define [D|B] = [Dn−1B| · · · |DB|B].
We say (D,B) satisfies the Kalman rank condition if and only if [D|B] has full
rank.

Remark 3.2.7. In our setting, (D,B) satisfies the Kalman rank condition if and
only if all dj are distinct and bj 6= 0, 1 ≤ j ≤ n(See [6, Remark 1.1]).

Theorem 3.2.8. Given T > 0, suppose that:

1. (ω, T, pdi) satisfies GCC, i = 1, · · · , n.

2. Ω has no infinite order of tangential contact on the boundary.
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Then the system Equation (3.2.1) is exactly controllable in (H1
0 (Ω) × L2(Ω))n if

and only if (D,B) satisfies the Kalman rank condition.

Remark 3.2.9. Let T0 be the controllability time corresponding to the wave equa-
tion with unit speed of propagation. Then the controllability time in the Theo-
rem 3.2.8 satisfies T > T0 max{ 1√

dj
; j = 1, 2, · · · , n}.

In advance, we consider the case with multiple control functions f1, f2, · · · , fm(1 ≤
m ≤ n). To be more specific, we consider the system:

∂2
tU −D∆U = BF1(0,T )(t)1ω(x) in (0, T )× Ω,
U |∂Ω = 0,
(U, ∂tU)|t=0 = (U0, U1).

(3.2.2)

where D = diag(d1, d2, · · · , dn), F =

 f1
...
fm

, and B =

 b11 · · · b1m
... . . . ...
bn1 · · · bnm

. We

can also define the Kalman rank condition rank[D|B] = n. Here we recall that
[D|B] = (Dn−1B|Dn−2B| · · · |DB|B). We have the following theorem:

Theorem 3.2.10. Given T > 0, suppose that:

1. (ω, T, pdi) satisfies GCC, i = 1, · · · , n.

2. Ω has no infinite order of contact on the boundary.

Then the system Equation (3.2.2) is exactly controllable if and only if (D,B) sat-
isfies the Kalman rank condition.

Remark 3.2.11. Since all coefficients and geometries are smooth, the use of the
microlocal defect measures could have been replaced by propagation of singularities
arguments.

3.3 Geometric Preliminaries

This part has many repeated contents as we have already presented in
Section 2.3 of Chapter 1 .
Let B = {y ∈ Rd : |y| < 1} be the unit ball in Rd. In a tubular neighbourhood
of the boundary, we can identify M = Ω× Rt locally as [0, 1[×B. More precisely,
for z ∈ M = Ω × Rt, we note that z = (x, y), where x ∈ [0, 1[ and y ∈ B and
z ∈ ∂M = ∂Ω × Rt if and only if z = (0, y). Now we consider R = R(x, y,Dy)
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which is a second order scalar, self-adjoint, classical, tangential and smooth pseudo-
differential operator, defined in a neighbourhood of [0, 1]×B with a real principal
symbol r(x, y, η), such that

∂r

∂η
6= 0 for (x, y) ∈ [0, 1[×B and η 6= 0. (3.3.1)

Let Q0(x, y,Dy), Q1(x, y,Dy) be smooth classical tangential pseudo-differential
operators defined in a neighbourhood of [0, 1]×B, of order 0 and 1, and principal
symbols q0(x, y, η), q1(x, y, η), respectively. Denote P = (∂2

x + R)Id+Q0∂x +Q1.
The principal symbol of P is

p = −ξ2 + r(x, y, η). (3.3.2)

We use the usual notations TM and T ∗M to denote the tangent bundle and
cotangent bundle corresponding to M , with the canonical projection π

π : TM( or T ∗M)→M.

Denote r0(y, η) = r(0, y, η). Then we can decompose T ∗∂M into the disjoint union
E ∪ G ∪ H, where

E = {r0 < 0}, G = {r0 = 0}, H = {r0 > 0}. (3.3.3)

The sets E , G, H are called elliptic, glancing, and hyperbolic set, respectively. De-
fine Char(P) = {(x, y, ξ, η) ∈ T ∗Rd+1|M : ξ2 = r(x, y, ξ, η)} to be the characteristic
manifold of P . For more details, see [15] and [13].

3.3.1 Generalised bicharacteristic flow

We begin with the definition of the Hamiltonian vector field. For a symplectic
manifold S with local coordinates (z, ζ), a Hamiltonian vector field associated
with a real valued smooth function f is defined by the expression:

Hf =
∂f

∂ζ

∂

∂z
− ∂f

∂z

∂

∂ζ
.

Considering the principal symbol p, we can also consider the associated Hamilto-
nian vector field Hp. The integral curve of this Hamiltonian Hp, denoted by γ,
is called a bicharacteristic of p. Our next goal is to study the behavior of the
bicharacteristic near the boundary. To describe the different phenomena when a
bicharacteristic approaches the boundary, we need a more accurate decomposition
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of the glancing set G. Let r1 = ∂xr|x=0. Then we can define the decomposition
G =

⋃∞
j=2 Gj, with

G2 = {(y, η) : r0(y, η) = 0, r1(y, η) 6= 0},
G3 = {(y, η) : r0(y, η) = 0, r1(y, η) = 0, Hr0(r1) 6= 0},

...
Gk+3 = {(y, η) : r0(y, η) = 0, Hj

r0
(r1) = 0,∀j ≤ k,Hk+1

r0
(r1) 6= 0},

...
G∞ = {(y, η) : r0(y, η) = 0, Hj

r0
(r1) = 0,∀j}.

Here Hj
r0

is just the vector field Hr0 composed j times. Moreover, for G2, we can
define G2,± = {(y, η) : r0(y, η) = 0,±r1(y, η) > 0}. Thus G2 = G2,+ ∪ G2,−. For
ρ ∈ G2,+, we say that ρ is a gliding point and for ρ ∈ G2,−, we say that ρ is a
diffractive point. For ρ ∈ Gj, j ≥ 2, we say that a bicharacterisric of p tangentially
contact the boundary {x = 0} ×B with order j at the point ρ.

Consider a bicharacteristic γ(s) with π(γ(0)) ∈ M and π(γ(s0)) ∈ ∂M be
the first point which touches the boundary. Then if γ(s0) ∈ H, we can define
ξ±(γ(s0)) = ±

√
r0(γ(s0)), which are the two different roots of ξ2 = r0 at the point

γ(s0). Notice that the bicharacteristic with the direction ξ− will leave the domain
M while the bicharacteristic with the other direction ξ+ will enter into the interior
of M . This leads to a definition of the broken bicharacteristics(See [26] Section
24.2 for more details):

Definition 3.3.1. A broken bicharacteristic of p is a map:

s ∈ I\D 7→ γ(s) ∈ T ∗M\{0}

where I is an interval on R and D is a discrete subset, such that

1. If J is an interval contained in I\D, then for s ∈ J 7→ γ(s) is a bicharac-
teristic of p in M .

2. If s ∈ D, then the limits γ(s+) and γ(s−) exist and belongs to T ∗zM\{0} for
some z ∈ ∂M , and the projections in T ∗z ∂M\{0} are the same hyperbolic
point.

If γ(s0) ∈ G, we have different situations. If γ(s0) ∈ G2,+, then γ(s), locally
near s0, passes transversally and enters into T ∗M immediately. If γ(s0) ∈ G2,−

or γ(s0) ∈ Gk for some k ≥ 3, then γ(s) will continue inside T ∗∂M and follow
the Hamiltonian flow of H−r0 . To be more precise, we have the definition of the
generalized bicharacteristics(See [26] Section 24.3 for more details):
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Definition 3.3.2. A generalized bicharacteristic of p is a map:

s ∈ I\D 7→ γ(s) ∈ T ∗M ∪ G

where I is an interval on R and D is a discrete subset I such that p ◦ γ = 0 and
the following properties hold:

1. γ(s) is differentiable and dγ
ds

= Hp(γ(s)) if γ(s) ∈ T ∗M or γ(s) ∈ G2,+.

2. Every t ∈ D is isolated i.e. there exists ε > 0 such that γ(s) ∈ T ∗M\T ∗∂M
if 0 < |s − t| < ε, and the limits γ(s±) are different points in the same
hyperbolic fiber of T ∗∂M .

3. γ(s) is differentiable and dγ
ds

= H−r0(γ(s)) if γ(s) ∈ G\G2,+.

Remark 3.3.3. We denote the Melrose cotangent compressed bundle by bT ∗M and
the associated canonical map by j : T ∗M 7→ bT ∗M . j is defined by

j(x, y, ξ, η) = (x, y, xξ, η).

Under this map j, one could see γ(s) as a continuous flow on the compressed
cotangent bundle bT ∗M . This is the so-called Melrose-Sjöstrand flow.

From now on we always assume that there is no infinite tangential contact
between the bicharacteristic of p and the boundary. This is in the meaning of the
following definition:

Definition 3.3.4. We say that there is no infinite contact between the bicharac-
teristics of p and the boundary if there exists N ∈ N such that the gliding set G
satisfies

G =
N⋃
j=2

Gj.

It is well-known that under this hypothesis there exists a unique generalized
bicharacteristic passing through any point. This means that the Melrose-Sjöstrand
flow is globally well-defined. One can refer to [42] and [43] for the proof.

3.4 High Frequency Estimates

3.4.1 Microlocal defect measure

In this section, we introduce the microlocal defect measures based on the article by
Gérard and Leichtnam [24] for Helmoltz equation and Burq [13] for wave equations.
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Let (uk)k∈N ∈ L2
loc(Rt;L

2(Ω)) be a bounded sequence, converging weakly to 0 and
such that {

Puk = o(1)H−1 ,

uk|∂M = 0.
(3.4.1)

Let uk be the extension by 0 across the boundary of Ω. Then the sequence uk
is bounded in L2

loc(Rt;L
2(Rd)). Let A be the space of classical polyhomogeneous

pseudo-differential operators of order 0 with compact support in Rt × Rd (i.e,
A = ϕAϕ for some ϕ ∈ C∞0 (Rt × Rd)). Let us denote by M+ the set of non
negative Radon measures on S∗(Rt × Rd). From [13, Section 1], we have the
existence of the microlocal defect measure as follows:

Proposition 3.4.1 (Existence of the microlocal defect measure). There exists a
subsequence of (uk) (still noted by (uk)) and µ ∈M+ such that

∀A ∈ A, lim
k→∞

(Auk, uk)L2 = 〈µ, σ(A)〉, (3.4.2)

where σ(A) is the principal symbol of the operator A (which is a smooth function
homogeneous of order 2 in the variable ξ, i.e. a function on S∗((Rt × Rd)).

Remark 3.4.2. In general, the existence of the microlocal defect measure does not
rely on the system Equation (3.4.1). For any bounded sequence uk in L2, which
is weakly convergent to 0, one is able to construct the microlocal defect measure
associated with the sequence (see [13] for more details).

Remark 3.4.3. In the article [31], Lebeau constructed the microlocal defect mea-
sure in another approach (see [31, Appendice] for more details). In the article
[15], Burq and Lebeau proved the similar existence result [15, Proposition 2.5] in
a setting of systems, which can be seen as an extension of Proposition 3.4.1

From [13, Théorème 15], we have the following proposition.

Proposition 3.4.4. For the microlocal defect measure µ defined above associated
with the system Equation (3.4.1), we have the following properties.

• The measure µ is supported on the intersection of the characteristic manifold
with Rt × Ω,

supp(µ) ⊂ {(t, x, τ, ξ);x ∈M, τ 2 = tξK(x)ξ}. (3.4.3)

• The measure µ does not charge the hyperbolic points in ∂M ,

µ = 0 on π−1
b (H),

where πb : T ∗(Rd+1)→ bT ∗M(the Melrose cotangent compressed bundle).
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• The measure µ is invariant by the generalised bicharacteristic flow.

Remark 3.4.5. Notice first that in [13, Section 3], the author considered the case
of solutions to the wave equation at the energy level (bounded in H1

loc, and hence
was considering second order operators. However, it is easy to pass from H1 to
L2 solutions by applying the operator ∂t and conversely from L2 to H1 by applying
the operator ∂−1

t , i.e. if v is an L2 solution, considering the solution u associated
to
(
(−∆D)−1(∂tv |t=0), v |t=0

)
, which of course satisfies ∂tu = v. This procedure

amounts to replacing the test operators of order 0 A by the test operator of order
2, B = −∂t ◦A ◦ ∂t, but since τ 2 does not vanish on the characteristic manifold, it
is an elliptic factor which changes nothing.

Remark 3.4.6. Notice also that due to discontinuity of the generalised bicharac-
teristics when they reflect on the boundary at hyperbolic points (the points corre-
sponding to the left and right limits at s ∈ D), in Definition 3.3.1, the generalised
bicharacteristic flow is not well defined (there are two points above any points
corresponding to s ∈ D). However, since the measure µ does not charge these hy-
perbolic points, this flow is well defined µ almost surely and the invariance property
makes sense. Notice also that in [13, Appendice], weaker property than invariance
(namely that the support is a union of generalised bicahracteristics) is proved. The
general result follows from this weaker result by applying the strategy in [31]. In
any case, for the purpose of the present chapter, the invariance of the support
would suffice.

3.4.2 Proof of the Theorem 3.2.1

Let V = (v0
1, v

1
1, · · · , v0

n, v
1
n). We introduce the following spaces:

• We define K1 = (H1
0 (Ω)× L2(Ω))n endowed with the norm

||V ||2K1
=

n∑
j=1

∫
Ω

(Kj∇v0
j · ∇v0

j + |v1
i |2)κi dx.

• We define K0 = (L2(Ω)×H−1(Ω))n endowed with the norm

||V ||2K0
=

n∑
i=1

∫
Ω

|v0
i |2κidx+ < v1

i , TKiv
1
i >H−1,H1

0
,

where
TKi : H−1(Ω)→ H1

0 (Ω)

f 7→ w

is defined as the unique solution w ∈ H1
0 (Ω) to − 1

κi
div(κiKi∇TKiw) = f .
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• We define K−1 = (H−1(Ω)×D(−∆)′)n endowed with the norm

||V ||2K−1
=

n∑
i=1

< v0
i , TKiv

0
i >H−1,H1

0
+ < v1

i , T̃Kiv
1
i >D(−∆Ki

)∗,D(−∆Ki
),

where D(−∆) is the domain of the Laplacian operator with zero Dirichlet
boundary condition and D(−∆)′ is its dual space, and

T̃Ki : D(−∆)′ → D(−∆)

f̃ 7→ w̃

is defined as the unique solution w̃ ∈ D(−∆) to (−∆Ki)
2T̃Kiw̃ = f̃ .

Remark 3.4.7. For any j ∈ {1, 2, · · · , n}, D(−∆Kj) = D(−∆).

Recall the considered control system:

�K1u1 = b1f1(0,T )(t)1ω(x) in (0, T )× Ω,
�K2u2 = b2f1(0,T )(t)1ω(x) in (0, T )× Ω,
...
�Knun = bnf1(0,T )(t)1ω(x) in (0, T )× Ω,
uj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
(u1, ∂tu1, · · · , un, ∂tun)|t=0 = U(0).

(3.4.4)

Consider the homogeneous system:

�K1v
h
1 = 0 in (0, T )× Ω,

�K2v
h
2 = 0 in (0, T )× Ω,

...
�Knv

h
n = 0 in (0, T )× Ω,

vhj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
(vh1 , ∂tv

h
1 , · · · , vhn, ∂tvhn)|t=0 = V h(0) ∈ K1.

(3.4.5)

Now, let us define

E = {V h(0) ∈ K1 : (b1κ1v
h
1 + · · ·+ bnκnv

h
n)(t, x) = 0, for any t ∈ (0, T ), x ∈ ω},

(3.4.6)
where (vh1 , · · · , vhn) is the solution to the homogeneous system Equation (3.4.5).
Hence, E is a closed subspace in K1. Denote the orthogonal projector operator
P : K1 → E⊥. And the adjoint system of System Equation (3.4.4) is the following
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system: 

�K1v1 = 0 in (0, T )× Ω,
�K2v2 = 0 in (0, T )× Ω,
...
�Knvn = 0 in (0, T )× Ω,
vj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
(v1, ∂tv1, · · · , vn, ∂tvn)|t=0 = P∗V (0) ∈ K0.

(3.4.7)

Using inequality Equation (3.1.11), the P−exactly controllability of the system
Equation (3.4.4) is equivalent to proving the following observability inequality:

C

∫ T

0

∫
ω

|b1κ1v1 + · · ·+ bnκnvn|2dxdt ≥ ||P∗V (0)||2K0
, (3.4.8)

where (v1, · · · , vn) is the solution to the adjoint system Equation (3.4.7).

Step 1: Establish a weak observability inequality

First we want to prove a weak inequality:

||P∗V (0)||2K0
≤ C

(∫ T

0

∫
ω

|b1κ1v1 + · · ·+ bnκnvn|2dxdt+ ||P∗V (0)||2K−1

)
, (3.4.9)

If the above inequality was false, we could get a sequence (P∗Ṽ k
0 )k∈N such that

||P∗Ṽ k
0 ||2K0

= 1, (3.4.10)

∫ T

0

∫
ω

|b1κ1v
k
1 + · · ·+ bnκnv

k
n|2dxdt→ 0, k →∞, (3.4.11)

and
||P∗Ṽ k

0 ||2K−1
→ 0, k →∞. (3.4.12)

Here we use vki (1 ≤ i ≤ n) to denote the corresponding solution of the system
Equation (3.4.7) with the initial data P∗Ṽ k

0 . Hence, we obtain n bounded se-
quences {vki }k∈N(1 ≤ i ≤ n). Let µi be the defect measure associated to the
sequence {vki }k∈N, by the construction in Subsection 3.4.1. Notice that in these
constructions, each sequence {vki }k∈N is solution to a particular wave equation

�Kiv
k
i = 0, vki |∂Ω= 0

and in Section 3.3 this corresponds to different principal symbols pi, different sets
Gi,Hi, Ei and different generalised bicharacteristic γi.
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From the definition of the measures, we obtain

∀A ∈ A, 〈µi, σ(A)〉 = lim
k→∞

(Avki , v
k
i )L2 ,

where vki is the extension by 0 across the boundary of Ω. From Proposition 3.4.4
we have

Lemma 3.4.8. Each measure µi is supported on the characteristic manifold

Char(pi) = {(t, x, τ, ξ) ∈ T ∗R× Rd |Ω; τ 2 = tξKi(x)ξ}

and is invariant along the generalised bicharacteristic flow associated to the symbol
pi =t ξKi(x)ξ − τ 2

Lemma 3.4.9. The measures µi and µl are mutually singular in (0, T ) × ω, for
i 6= l.

Remark 3.4.10. We recall that two measures µ and ν are singular if there exists
a measurable set A such that µ(A) = 0 and ν(Ac) = 0.

Proof. This follows easily from Lemma 3.4.8 and the assumption 2 in Theo-
rem 3.2.5, which implies that over ω, the two characteristic manifolds Char(pi)
and Char(pl) are disjoint.

Lemma 3.4.11. For A ∈ A with the compact support in (0, T ) × ω, we obtain
that for i 6= l:

lim sup
k→∞

|(Avki , vkl )L2 | = 0. (3.4.13)

Proof. For ∀(t, x) ∈ (0, T )× ω, we have that

Char(pi) ∩ Char(pl) = {0}, i 6= l.

Then we choose a cut-off function βi ∈ C∞(T ∗R × Rd) homogeneous of degree 0
for |(τ, ξ)| ≥ 1, with compact support in (0, T )× ω such that

βi|Char(pi) = 1, βi|Char(pl) = 0, and 0 ≤ βi ≤ 1.

Since A ∈ A with the compact support in (0, T )×ω, for some ϕ ∈ C∞0 ((0, T )×ω),
we have that A = ϕAϕ. We choose ϕ̃ ∈ C∞0 ((0, T )×ω) such that ϕ̃|supp(ϕ) = 1 i.e,
ϕ̃ϕ = ϕ. Now let us consider the (Avki , v

k
l )L2 . First, we have that

(Avki , v
k
l )L2 = (ϕAϕvki , v

k
l )L2

= (ϕAϕvki , ϕ̃v
k
l )L2

= ((1−Op(βi))ϕAϕv
k
i , ϕ̃v

k
l )L2 + (Op(βi)ϕAϕv

k
i , ϕ̃v

k
l )L2 .
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For the first term ((1−Op(βi))ϕAϕv
k
i , ϕ̃v

k
l )L2 , by the Cauchy-Schwarz inequality,

therefore we obtain that

|((1−Op(βi))ϕAϕv
k
i , ϕ̃v

k
l )L2| ≤ ||(1−Op(βi))ϕAϕv

k
i ||L2||ϕ̃vkl ||L2

As we know that {vkl } is bounded in L2
loc(Rt × Rd), there exists a constant C such

that
||ϕ̃vkl ||2L2 = (ϕ̃vkl , ϕ̃v

k
l )L2 ≤ C.

From the definition of the measure µi, we obtain

lim
k→∞
||(1−Op(βi))ϕAϕv

k
i ||2L2 = lim

k→∞
((1−Op(βi))ϕAϕv

k
i , (1−Op(βi))ϕAϕv

k
i )L2

= 〈µi, (1− βi)2ϕ4|σ(A)|2〉.

From Lemma 4.2.9, we have that supp (µi) ⊂ Char(pi). In addition, by the
choice of βi, we know that 1 − βi ≡ 0 on supp (µi), which implies that 〈µi, (1 −
βi)

2ϕ4|σ(A)|2〉 = 0. Hence, we obtain

lim sup
k→∞

|((1−Op(βi))ϕAϕv
k
i , ϕ̃v

k
l )L2| = 0. (3.4.14)

The other term (Op(βi)ϕAϕv
k
i , ϕ̃v

k
l )L2 = (vki , ϕA

∗ϕOp(βi)
∗ϕ̃vkl )L2 is dealt with

similarly by exchanging i and l.

Now let us come back to the proof of the weak observability inequality Equa-
tion (3.4.9). By the assumption Equation (3.4.11), We know that∫ T

0

∫
ω

|b1κ1v
k
1 + · · ·+ bnκnv

k
n|2dxdt→ 0,

for χ ∈ C∞0 (ω × (0, T )), and we would like to obtain:∑
1≤i,l≤n

〈χbiκivki , χblκlvkl 〉 → 0, as k →∞.

According to Lemma 3.4.11, we know that for i 6= l,

lim sup
k→∞

|〈χbiκivki , χblκlvkl 〉| = 0. (3.4.15)

As a consequence, we know that

lim sup
k→∞

Σn
i=1〈χbiκivki , χbiκivki 〉 = 0. (3.4.16)
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Using again the definition of the measure µi, we obtain the following:

0 ≤ 〈µi, (χbiκi)2〉 = lim
k→∞
〈χbiκivki , χbiκivki 〉 ≤ lim sup

k→∞
Σn
i=1〈χbiκivki , χbiκivki 〉 = 0.

(3.4.17)
Thus, we know that

µi|ω×(0,T ) = 0.

Since µi is invariant along the general bicharacteristics of pKi (by Lemma 3.4.8),
combining with GCC, we know that µi ≡ 0. Since µi = 0, we have vki → 0 strongly
in L2

loc((0, T ) × Ω). Now we have to estimate ||∂tvk1(0)||H−1 . Let χ ∈ C∞0 ((0, T )).
Multiply the equation

�K1v1 = 0

by TK1(χ2vk1) and then integrate on (0, T )× Ω. We obtain that

0 =

∫ T

0

∫
Ω

�K1v
k
1 · TK1(χ2vk1) dx dt

=

∫ T

0

∫
Ω

vk1 · (−∆K1)TK1(χ2vk1) dx dt−
∫ T

0

∫
Ω

∂tv1 · TK1(∂t(χ2)vk1) dx dt

−
∫ T

0

||χ∂tvk1 ||2H−1

= ||χvk1 ||2L2 −
∫ T

0

||χ∂tvk1 ||2H−1 +

∫ T

0

∫
Ω

vk1 · TK1(∂2
t (χ

2)vk1 + ∂t(χ2)∂tvk1) dx dt

(3.4.18)
For the term

∫ T
0

∫
Ω
vk1 · TK1(∂2

t (χ
2)vk1 + ∂t(χ2)∂tvk1) dx dt, we know that vk1 → 0

strongly in L2
loc((0, T ) × Ω) and TK1(∂2

t (χ
2)vk1 + ∂t(χ

2)∂tv
k
1) is bounded in L2.

Thus, up to a subsequence, it tends to 0 as k →∞. Hence, we obtain that:∫ T

0

||χ∂tvk1 ||2H−1 → 0, as k →∞.

So for all 0 < t1 < t2 < T , ∫ t2

t1

||∂tvk1(t)||2H−1dt→ 0.

So for almost every t ∈]t1, t2[, ||∂tvk1(t)||2H−1+||vk1(t)||2L2 → 0. Then by the backward
well-posedness, we can conclude:

||∂tvk1(0)||2H−1 + ||vk1(0)||2L2 → 0.

The same reasoning holds for vkj , 2 ≤ j ≤ n. This gives a contradiction with
Equation (3.4.10), which proves the weak observability inequality Equation (3.4.9).
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Remark 3.4.12. Let us denote the energy E(vkj )(t) by E(vkj )(t) = ||∂tvkj (t)||2H−1 +
||vkj (t)||2L2. In fact, each vkj satisfies a conservative system. Hence, we obtain

E(vkj )(0) = E(vkj )(t)→ 0

by the conservation law.

Step 2: Descriptions of the space E

Define

N (T ) = {P∗V (0) ∈ K0 : (b1κ1v1 + · · ·+ bnκnvn)(t, x) = 0, for t ∈ (0, T ), x ∈ ω}.
(3.4.19)

Lemma 3.4.13. E = N (T ) where E was defined in Equation (3.4.6) and E has
a finite dimension.

Proof. According to the weak observability inequality Equation (3.4.9), for P∗V (0) ∈
N (T ), we obtain that

||P∗V (0)||2K0
≤ C||P∗V (0)||2K−1

. (3.4.20)

We know that N (T ) is a closed subspace of K0. By the compact embedding
K0 ↪→ K−1, we know that N (T ) has a finite dimension. By definition, we know
that E ⊂ N (T ). Hence, we obtain that E has a finite dimension. Then we want
to show that E = N (T ). Define

A =


0 −1 · · · 0

−∆K1 0 · · · 0
...

... 0 −1
0 0 −∆Kn 0

 .

Thus, the solution (v1, ∂tv1, · · · , vn, ∂tvn)t can be written as
v1

∂tv1
...
vn
∂tvn

 = e−tA P∗V (0).

Since N (T ) is of finite dimension, it is complete for any norm. Setting δ > 0(
see Remark 3.4.14), we know that Equation (3.4.20) is still true for P∗V (0) ∈
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N (T−δ). Taking P∗V (0) ∈ N (T ), for ε ∈]0, δ[, we have e−εA P∗V (0) ∈ N (T−δ).
For α large enough, as ε→ 0+,

(α + A )−1 1

ε
(Id− e−εA )P∗V (0)→ A (α + A )−1P∗V (0),

as (α + A )−1P∗V (0) ∈ D(A ). Hence, we know that {1
ε
(Id − e−εA )P∗V (0)}ε>0 is

a Cauchy sequence in N (T − δ), endowed with the norm ||(α+ A )−1 · ||K1 . Since
all norms are equivalent, we obtain a Cauchy sequence {1

ε
(Id − e−εA )P∗V (0)}ε>0

in N (T − δ), endowed with the norm || · ||K1 , which yields A P∗V (0) ∈ K1. As a
consequence, we obtain N (T ) ⊂ D(A ) ⊂ K1. Hence, we obtain that E = N (T )
and has a finite dimension. One can see [21] for more details.

Remark 3.4.14. One has to take δ small enough. Actually, if T0 is the constant
such that (ω, T0) satisfies GCC, and T > T0, one is able to choose, for example,
δ = T−T0

2
.

Step 3: Proof of the observability inequality Equation (3.4.8)

If Equation (3.4.8) was false, we could find a sequence {P∗V k(0)}k∈N ⊂ K0 such
that

||P∗V k(0)||K0 = 1,

∫ T

0

||b1κ1v
k
1 + · · ·+ bnκnv

k
n||2L2(ω)dt→ 0. (3.4.21)

First, we know that {P∗V k(0)k}k∈N is bounded in K0 = (L2 × H−1)n. Hence,
there exists a subsequence (also denoted by P∗V k(0)) weakly converging in K0 =
(L2 × H−1)n, to a limit which we denote with P∗V (0). We also know that
P∗V (0) leads to a solution (v1, · · · , vn) of the system Equation (3.4.7) and sat-
isfies that b1κ1v1 + · · · + bnκnvn = 0 in (0, T ) × ω. Thus, by the definition of
N (T ) (see Equation (3.4.19)), we know that P∗V (0) ∈ N (T ) = E, which implies
that P∗V (0) = 0. Since the embedding K0 ↪→ K−1 is compact, we obtain that
||P∗V (0)k||2K−1

→ ||P∗V (0)||2K−1
. From the weak observability inequality Equa-

tion (3.4.9), we obtain:
1 ≤ C||P∗V (0)||2K−1

,

which contradicts to the fact that P∗V (0) = 0. Then observability inequality
Equation (3.4.8) follows. This concludes the proof of the P−exact controllability
of the system Equation (3.4.4).

3.4.3 The Proof of Theorem 3.2.5

According to the proof above, we only need to show that E⊥ = {0}, which is
equivalent to P∗ = Id. If we denote by Ṽ (t) the solution of

∂tṼ + A Ṽ = 0, Ṽ |t=0 = V (0),
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then, A V (0) = −∂tṼ |t=0 ∈ N (T ) provided that V (0) ∈ N (T ). This implies that
A N (T ) ⊂ N (T ). Since N (T ) is a finite dimensional closed subspace of D(A ),
and stable by the action of the operator A , it contains an eigenfunction of A . To
be specific, there exists (e1, e2, · · · , en) ∈ N (T ) and λ ∈ C such that

0 −1 · · · 0
−∆K1 0 · · · 0

...
... 0 −1

0 0 −∆Kn 0




e0
1

e1
1
...
e0
n

e1
n

 = λ


e0

1

e1
1
...
e0
n

e1
n

 .

It is equivalent to the following system:

−e1
1 = λe0

1 in Ω,
−∆K1e

0
1 = λe1

1 in Ω,
· · ·
−e1

n = λe0
n in Ω,

−∆Kne
0
n = λe1

n in Ω,
b1κ1e

0
1 + · · ·+ bnκne

0
n = 0, in ω.

(3.4.22)

We can simplify this into
∆K1e

0
1 = λ2e0

1 in Ω,
∆K2e

0
2 = λ2e0

2 in Ω,
· · ·
∆Kne

0
n = λ2e0

n in Ω,
b1κ1e

0
1 + · · ·+ bnκne

0
n = 0 in ω,

Since the system satisfies the unique continuation of eigenfunctions, we know
that e0

1 = · · · = e0
n = 0 in Ω, which implies that E = N (T ) = {0}. Hence, from

Equation (3.4.8) with P∗ = Id, we obtain the observability inequality

C

∫ T

0

∫
ω

|b1κ1v1 + · · ·+ bnκnvn|2dxdt ≥ ||V (0)||2K0
.

This concludes the proof of Theorem 3.2.5.

3.5 Unique continuation of eigenfunctions

3.5.1 A counterexample

First, we construct an example to show that the conditions in Theorem 3.2.1 are
not sufficient to ensure the unique continuation of eigenfunctions. Now, let us
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focus on the unique continuation problem in dimension 1. We consider a smooth
metric in dimension 1, g = c(x)dx2. Then we can define the Laplace-Beltrami
operator in the sense:

∆g =
1√

det(g)

d

dx
(
√

det(g)g−1 d

dx
)

=
1

c

d2

dx2
− c′

2c2

d

dx

(3.5.1)

Fix the open interval (0, π) and the subinterval (a, b) ⊂ (0, π)(a > π
2
). Now we

consider the unique continuation problem:
u′′1 = −λ2u1,

∆gu2 = −λ2u2,
u1 + u2 = 0 in (a, b),
u1, u2 ∈ H1

0 ((0, π)).

(3.5.2)

In general, the unique continuation of eigenfunctions does not hold.

Theorem 3.5.1. There exists a smooth Riemannian metric g = c(x)dx2, and two
eigenfunctions u1, u2 of ∆g and d2

dx2 on (0, π) associated with eigenvalue 1 such
that u1 + u2 = 0, in (a, b) ⊂ (0, π) and u1 + u2 6≡ 0 in (0, π).

Proof. Let χ ∈ C∞(R) satisfying the following conditions:

1. χ(0) = χ(π) = 0;

2. 0 < χ ≤ K on (0, π) and χ(π
2
) = K > 1;

3. χ(x) = 1,∀x ∈ (a, b);

4. χ′(x) > 0 for x ∈ [0, π
2
[, χ′(x) < 0 for x ∈]b, π] and χ′(x) < 0 for x ∈]π

2
, a[

Define u2(x) = −χ(x) sinx. Hence, we obtain u2(x) = − sinx on (a, b) and
u′2(x) = −χ′(x) sinx− χ(x) cosx. Then we define c(x) by

c(x) =
(χ′(x) sinx+ χ(x) cosx)2

K2 − χ2 sin2 x
, (3.5.3)

with a constant K > 1. It is easy to check that c ≥ 0. Since we want g to be a
Riemannian metric, we need c > 0. Let us discuss in different cases,

1. if x ∈]0, π
2
[, we know that χ′(x) > 0, χ(x) > 0. Hence, we have χ′(x) sinx+

χ(x) cosx > 0;
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2. if x ∈ [a, b], χ′(x) = 0, χ(x) = 1, we obtain χ′(x) sinx+χ(x) cosx = cosx < 0
since a > π

2
;

3. if x ∈]b, π[, we know that χ′(x) < 0, χ(x) > 0. Hence, we have χ′(x) sinx +
χ(x) cosx < 0;

4. if x ∈]π
2
, a[, we know that χ′(x) < 0, χ(x) > 0. Hence, we have χ′(x) sinx+

χ(x) cosx < 0;

5. if x = π
2
, χ′(π

2
) = 0, c(π

2
) = 1− χ′′(π

2
)

K
≥ 1.

So we can conclude that c > 0 and g is a Riemannian metric.
We want to show that c is C∞ near π

2
. Let f(x) = (χ′(x) sinx + χ(x) cosx)2

and g(x) = K2 − χ2 sin2 x, then we obtain c(x) = f
g
. We claim that there exist

f̃ , g̃ ∈ C∞ and f̃(π
2
) 6= 0, g̃(π

2
) 6= 0 such that f(x) = (x − π

2
)2f̃(x) and g(x) =

(x− π
2
)2g̃(x). We just use the Taylor expansion of χ, χ′, sin and cos:

χ(x) = K +
1

2
χ′′(

π

2
)(x− π

2
)2 +R1(x),

χ′(x) = χ′′(
π

2
)(x− π

2
) +

1

2
χ′′′(

π

2
)(x− π

2
)2 +R2(x),

sin(x) = 1− 1

2
(x− π

2
)2 +R3(x),

cos(x) = −(x− π

2
) +R4(x),

(3.5.4)

where limx→π
2

Rj
(x−π

2
)2 = 0, for j = 1, 2, 3, 4. Then we obtain:

f(x) = ((χ′′(
π

2
)−K)2 + R̃1)(x− π

2
)2;

g(x) = (−K(χ′′(
π

2
)−K) + R̃2)(x− π

2
)2.

(3.5.5)

Here limx→π
2
R̃j = 0 for j = 1, 2. Now if we choose a small neighbourhood of π

2
,

then f̃ = (χ′′(π
2
)−K)2 + R̃1 and g̃ = −K(χ′′(π

2
)−K)+ R̃2 satisfy the property. So

we know c is C∞ and c > 0, which means that g is a smooth Riemannian metric.
In addition, c < 1 in (a, b) and ∆g and ∆ admit the same eigenfunction in this
interval (a, b).

Remark 3.5.2. In fact, we can construct a counterexample in any dimension d ≥
1. For example, we define M = (0, π)×Πd−1

y where Πd−1
y is the torus of dimension

d−1. Then consider two metric g1 = dx2+
∑d−1

j=0 dy2
j and g2 = c(x) dx2+

∑d−1
j=0 dy2

j

where c(x) dx2 is the metric we constructed in the dimension 1. Take the same
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u1(x) and u2(x) in the proof of Theorem 3.5.1. Let V be the eigenfunction of∑d−1
j=1

d2

dy2
j
associated with eigenvalue α in Πd−1

y . Then


−∆g1(u1(x)V (y)) = (α + 1)u1(x)V (y),
−∆g2(u2(x)V (y)) = (α + 1)u2(x)V (y),
u1(x)V (y) + u2(x)V (y) = 0, in (a, b)× Πd−1

y ,
u1(x)V (y), u2(x)V (y) ∈ H1

0 (M).

But we know u1(x)V (y) + u2(x)V (y) 6≡ 0 in M .

As we have seen, not every smooth metric can give us the unique continuation
of eigenfunctions. Here, we will give a positive result under a strong condition of
analyticity. In particular, let us consider the example of two equations:

�K1u1 = b1f1(0,T )(t)1ω(x) in (0, T )× Ω
�K2u2 = b2f1(0,T )(t)1ω(x) in (0, T )× Ω
uj = 0 on (0, T )× ∂Ω, j = 1, 2,
uj(0, x) = u0

j(x), ∂tuj(0, x) = u1
j(x), j = 1, 2.

(3.5.6)

Proposition 3.5.3. Given T > 0, suppose that:

1. (ω, T, pKi) satisfies GCC, i = 1, 2.

2. K1 > K2 in Ω with analytic coefficients.

3. There exists a constant c such that density functions κ1, κ2 are analytic and
κ1 = cκ2.

4. Ω has no infinite order of contact on the boundary.

Then the system Equation (3.5.6) is exactly controllable.

Proof. According to Theorem 3.2.1, we only need to show the unique continuation
of eigenfunctions of system Equation (3.5.6):

−∆K1u1 = λ2u1 in Ω,
−∆K2u2 = λ2u2 in Ω,
cu1 + u2 = 0 in ω.

(3.5.7)

Since K1 and K2 have analytic coefficients, we know u1 and u2 are analytic func-
tions. Then cu1+u2 is also analytic. By unique continuation for analytic functions,
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cu1 + u2 = 0 in the whole domain Ω. By the relations of two density functions
κ1 = cκ2, we have:

∆K1u1 =
1

κ1(x)
div(κ1(x)K1∇u1)

=
1

cκ2(x)
div(cκ2(x)K1∇u1)

=
1

κ2(x)
div(κ2(x)K1∇u1).

(3.5.8)

Then

−c∆K1u1 −∆K2u2 = − c

κ2(x)
div(κ2(x)K1∇u1)− 1

κ2(x)
div(κ2(x)K2∇u2)

= − c

κ2(x)
div(κ2(x)K1∇u1) +

c

κ2(x)
div(κ2(x)K2∇u1)

= − c

κ2(x)
div(κ2(x)(K1 −K2)∇u2).

On the other hand, we know −c∆K1u1 − ∆K2u2 = λ2(cu1 + u2) = 0. Hence, we
have:

− 1

κ2(x)
div(κ2(x)(K1 −K2)∇u1) = 0.

We recall that − 1
κ2(x)

div(κ2(x)(K1 − K2)∇·) is an elliptic operator. Hence, with
u1|∂Ω = 0 on the boundary, we know that u1 = 0. Hence, we deduce u2 = −cu1 = 0
in Ω, which gives N (T ) = 0.

3.5.2 Constant Coefficient Case

In this section, we consider the simultaneous control problem for the system:

∂2
tU −D∆U = Bf1(0,T )(t)1ω(x) in (0, T )× Ω, (3.5.9)

where U =

 u1
...
un

, B =

 b1
...
bn

 and D = diag(d1, · · · , dn). Then the system

can be written as

(∂2
t − d1∆)u1 = b1f1(0,T )(t)1ω(x) in (0, T )× Ω,

...
(∂2
t − dn∆)un = bnf1(0,T )(t)1ω(x) in (0, T )× Ω,

uj = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n,
uj(0, x) = u0

j(x), ∂tuj(0, x) = u1
j(x), 1 ≤ j ≤ n.
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Recall that the Kalman rank condition for this case is rank[D|B] = n if and only
if all dj are distinct and bj 6= 0, 1 ≤ j ≤ n(See [6]). Without loss of generality, we
may assume that d1 < d2 < · · · < dn. We want to prove the exact controllability
for this case(Theorem 3.2.8).

3.5.3 Proof of Theorem 3.2.8

By Theorem 3.2.1, we only need to prove the unique continuation properties for
eigenfunctions. Here we only state some facts without repeating the same trick as
before. Define

N (T ) = {V ∈ (L2×H−1)n : (b1v1+b2v2+· · ·+bnvn)(x, t) = 0,∀(x, t) ∈ (0, T )×ω}.

Then, N (T ) is a finite dimensional closed subspace of D(A ), and stable by
the action of the operator A , it contains an eigenfunction of A , where A =(

0 −Id
−D∆ 0

)
. Thus there exist β ∈ C and Vβ = (V1, V2) such that A Vβ = βVβ,

i.e.

−∆V1 = −β2D−1V1 (3.5.10)

If β 6= 0, (−β2)−k(−∆)kV1 = D−kV1 and (−∆)kBtV1 = (−β2)kBtD−kV1. Since
V1 solves the Laplace eigenvalue problem, we know that V1 is analytic in Ω which
ensures that BtV1 = b1v

1
1 + · · ·+ bnv

n
1 = 0 in the whole domain Ω. Thus

0 = [BtV1|(−β2)−1(−∆)BtV1| · · · |(−β2)−n(−∆)nBtV1] = [D|B]tD1−nV1 (3.5.11)

Since rank[D|B] = n, it is invertible. This gives that V1 = 0.
If β = 0, we immediately obtian that V1 = 0 by the boundary condition.
Now we assume that the matrix (D,B) does not satisfy the Kalman rank

condition. Then we know that either there exist dj1 and dj2 such that dj1 = dj2 ,
or there exists some bj = 0. We want to show the unique continuation property
fails in both cases. One can refer to [22] for more details.

For the first case bj = 0, we know that

(∂2
t − dj∆)uj = 0 in (0, T )× Ω,

by the conservation of energy, the solution uj cannot be zero at any time if the
initial data is not zero.

For the second case, we consider the unique continuation property of the eigen-
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functions as follows: 

−d1∆φ1 = λ2φ1 in Ω,
...
−dj1∆φj1 = λ2φj1 in Ω,
−dj2∆φj2 = λ2φj2 in Ω,
...
−dn∆φn = λ2φn in Ω,
φj = 0 on ∂Ω, 1 ≤ j ≤ n,
b1φ1 + · · ·+ bnφn = 0 in ω,

Since we have the relation dj1 = dj2 , we know that there exists a non-zero solution
(0, · · · , 0, φ,− bj1

bj2
φ, 0, · · · , 0), where φ is an eigenfunction for −dj1∆ of eigenvalue

λ2. Hence, we cannot obtain the exact controllability in this case.
To conclude, we have obtained that the Kalman rank condition is a sufficient

and necessary condition for the exact controllabilty.

3.5.4 Two Generic Properties

If we define ∆K1 = ∆ = d2

dx2 and n = 2, we have shown that not every smooth met-
ric can give us a unique continuation result in dimension 1 (see Subsection 3.5.1).
Then we want to prove a generic property for the metrics which can give the unique
continuation result in dimension 1. We introduce the following space of smooth
metrics to be sections of a bundle endowed with C∞−topology

M = {g ∈ C∞(Ω, T ∗Ω⊗ T ∗Ω) : g(x)(vx, vx) > 0, for 0 6= vx ∈ TxΩ}.

Let Ω = (0, π).

Proposition 3.5.4. In dimension 1, suppose that we fix the Laplacian ∆ = d2

dx2

in (0, π) with its spectrum σ(∆). Then the set Guc = {g ∈M : σ(∆g)∩ σ(∆) = ∅}
is residual inM.

Proof. First, we notice that any connected one dimensional Riemannian manifold
is diffeomorphic either to R or to S1. We already know that σ(∆) = {k2}k∈N. In
our setting, we have g = c(x)dx2. Then by change of variables, y =

∫ x
0

√
c(s)ds.

Then d
dy

= dx
dy

d
dx

= 1√
c(x)

d
dx
. Hence, we obtain d2

dy2 = 1√
c(x)

d
dx

1√
c(x)

d
dx

= ∆g. Define

L =
∫ π

0

√
c(s)ds. Hence, σ(∆g) = σ( d2

dy2 ) = {k2π2

L2 }k∈N. If σ(∆g) ∩ σ(∆) 6= ∅, we
obtain that for some k and l, L = kπ

l
∈ πQ, i.e.

∫ π
0

√
c(x) dx ∈ πQ.

Corollary 3.5.5. Fix ∆ = d2

dx2 , for every metric g ∈ Guc, the system Equa-
tion (3.5.2) has a unique solution u1 = u2 = 0.
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Proof. By the definition of Guc, we know σ(∆g) ∩ σ(∆) = ∅. Consider a solution
u1, u2 of 

u′′1 = −λ2u1,
∆gu2 = −λ2u2,

u1 + u2 = 0 in (a, b),
u1, u2 ∈ H1

0 ((0, π)).

Now, assume that u1 = 0. Then u2 = 0 in (a, b). Hence, by the unique continuation
property for the eigenfunctions, we know that u2 = 0. This means that the system
has only trivial solution in this case. It is the same for u2 = 0.

Assume that u1 6= 0 then u1 6= 0 in (a, b)(otherwise u1 = 0 everywhere by the
unique continuation property) and therefore u2 6= 0. Then u1 and u2 are both
eigenfunctions. Hence λ2 ∈ σ(∆g) ∩ σ(∆) = ∅, which is a contradiction. So for
every g ∈ Guc, the system has only the trivial solution (0, 0).

From now on and until the end of the section, we restrict to the 2 dimensional
case d = 2. For any smooth metric g, we can define a Laplace-Beltrami operator
−∆g.

Definition 3.5.6. Define the map:

Eα : H2(Ω) ∩H1
0 (Ω)×M→ L2

by Eα(u, g) = (∆g + α)u.

Remark 3.5.7. −∆g is a Fredholm operator of index 0, and Eαg = Eα(·, g) is also
a Fredholm map of index 0(see [51]). Here α is just a parameter. In the later
proof, we will let α take all possible values in the spectrum of the given Laplacian.

From now on, we fix one metric g0 and the associted operator −∆g0 .

Lemma 3.5.8. For any λ fixed and any element f ∈ L2, λ /∈ σ(∆g) if and
only if f is a regular value (i.e. the tangential map at this point is surjective) of
Eλg : H2(Ω) ∩H1

0 (Ω)→ H−1.

Proof. Let Eλg (u) = Eλ(u, g) = f . At this point u, the tangential map DEλg :
Tu(H

k(Ω)∩H1
0 (Ω))→ H−1(Ω) is given by DEλg (v) = (∆g + λ)v, since ∆g + λ is a

linear operator. λ /∈ σ(∆g) is equivalent to that ∆g + λ is bijective, which means
f is a regular value of Eλg .

Our proof mainly relies on the following theorem:

Theorem 3.5.9 (Transversality theorem). Let ϕ : H × B → E be a Ck map,
H, B, and E Banach manifolds with H and E separable. If f is a regular value
of ϕ and ϕb = ϕ(·, b) is a Fredholm map of index < k, then the set {b ∈ B :
f is a regular value of ϕb} is residual in B.
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One can find a proof in [1].

Lemma 3.5.10. If λ ∈ σ(∆g0) is a regular value of Eλ, then the set {g ∈M : λ /∈
σ(∆g)} is residual inM.

Proof. Just apply Theorem 3.5.9, combining with Lemma 3.5.8.

Now we have to check with the hypothesis, that is to verify that λ ∈ σ(−∆g0)
is a regular value for Eλ. In the following, we will use D1 to denote the differential
in the direction of H2(Ω)∩H1

0 (Ω) and D2 to denote the differential in the direction
ofM.

Now let us check that the image of D2Eλ is dense in dimension 2. We will use
the conformal variations of the metric g. Here we choose r ∈ C∞0 (Ω)

D2Eλ(rg) = lim
s→0

(∆g+srg −∆g)u

s

= lim
s→0

1

s

(
1

|(1 + sr)g| 12
∂i|(1 + sr)g|

1
2 (1 + sr)−1gij∂ju−∆gu

)

= lim
s→0

1

s

(
2− 2

2
(1 + sr)−2∂irg

ij∂ju+
1

1 + sr
∆gu−∆gu

)
= −r∆gu

(3.5.12)

Let us assume that v is orthogonal to D2Eλ(rg) for all r, then:

0 =

∫
Ω

vD2Eλ(rg)dµg

=

∫
Ω

v(−r∆gu)dµg

=

∫
Ω

r(λu− λ)vdµg.

(3.5.13)

Since Equation (3.5.13) holds for any r ∈ C∞0 (Ω) we obtain that:

(λu− λ)v = 0. (3.5.14)

Now, we can check that λ is a regular value of Eλ.

Lemma 3.5.11. In dimension 2, λ ∈ σ(∆g0) is a regular value of Eλ.

Proof. Let (u, g) satisfy Eλ(u, g) = (∆g + λ)u = λ, then at the point (u, g), we
have

DEλ(v, h) = (∆g + λ)v +D2Eλ(h).
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Now we need to verify the surjectivity of this map. If y ∈ Im(∆g + λ)⊥, then y
is a weak solution of (∆g + λ)y = 0, and y is smooth. Let us assume that y is
orthogonal to D2Eλ(rg). Then according to Equation (3.5.14), we obtain that:

(λu− λ)y = 0.

First, we claim that u cannot be a constant. Assume that u is a constant function,
∆gu = 0 and (∆g + λ)u = λ gives that u = 1. But this does not satisfy the
boundary condition. Hence, u cannot be a constant. In particular, u 6≡ 1. Now we
obtain that λu−λ 6≡ 0. If λu−λ 6= 0 at x0, there exists a open neighbourhood N
such that λu− λ 6= 0 in N . Then y ≡ 0 in N . Hence, we know that y vanishes in
a subdomain of Ω. Then by the unique continuation property, we know y = 0 in
Ω. This leads to the surjectivity of the map DEλ, which means that λ ∈ σ(−∆g0)
is a regular value of Eλ.

Now we can deduce that the set Gλ = {g ∈M : λ /∈ σ(∆g)} is residual inM.

Proposition 3.5.12. In dimension 2, suppose that we fix one metric g0 and the
associated Laplacian ∆g0 with its spectrum σ(∆g0). Then the set Guc = {g ∈ M :
σ(∆g) ∩ σ(∆g0) = ∅} is residual inM.

Proof. Define:
Guc = ∩λ∈σ(∆g0 )G

λ.

G is a intersection of countably many residual sets, so it is still residual inM. And
for any metric g ∈ Guc, σ(∆g) ∩ σ(∆g0) = ∅. Assume that λ0 ∈ σ(∆g) ∩ σ(∆g0),
which gives that g /∈ Gλ0 . That contradicts to the fact that g ∈ Guc = ∩λ∈σ(∆)G

λ.
Hence, for fixed Laplacian ∆ with its spectrum σ(∆g0), the set {g ∈M : σ(∆g) ∩
σ(∆g0) = ∅} is residual inM.

Corollary 3.5.13. In dimension 2, fix the canonical Laplace operator ∆, for every
metric g ∈ Guc, the system 

∆u1 = −λ2u1,
∆gu2 = −λ2u2,

u1 + u2 = 0 in ω ⊂ Ω,
u1, u2 ∈ H1

0 (Ω),

has only trivial solution u1 = u2 = 0.

3.6 Constant Coefficient Case with Multiple Con-
trol Functions

In this section, we prove Theorem 3.2.10. First we study the information given
by the Kalman rank condition. Without loss of generality, we assume that the
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diagonal matrixD has the formD =

 d1Idn1

. . .
dsIdns

, where
∑

1≤i≤s ni =

n and di(1 ≤ i ≤ s) are all distinct. And we can always rearrange the lines of the
system Equation (3.2.2) to ensure that this property is verified:

(∂2
t − d1∆)U1 = B1F1(0,T )(t)1ω(x) in (0, T )× Ω,

...
(∂2
t − ds∆)Us = BsF1(0,T )(t)1ω(x) in (0, T )× Ω,

for every 1 ≤ i ≤ s, where Ui =

 ui1
...
uini

 and Bi =

 bi11 · · · bi1m
... . . . ...
bini1 · · · binim

 is a

matrix of size ni ×m.

Proposition 3.6.1. (D,B) satisfies the Kalman rank condition if and only if
rank(Bi) = ni ≤ m.

Remark 3.6.2. If m = 1, we know that rank(Bi) = ni ≤ 1. Thus, we obtain
ni = 1 and Bi = bi 6= 0. This implies that every entry of control matrix B is
nonzero and all speeds di are distinct. We recover the result of Remark 1.1 in [6].
If m ≥ 2, we can allow some block diIdni is of size ni × ni, with ni ≥ 2. For

example, take D = diag(1, 1, 2) and B =

 1 0
0 1
1 0

. Then we obtain [D|B] = 1 0 1 0 1 0
0 1 0 1 0 1
4 0 2 0 1 0

. Hence, we know that rank[D|B] = 3 which means that

the matrix [D|B] has full rank.

The proof of Proposition 3.6.1 is given in the Appendix.
Now we can prove Theorem 3.2.10.

Proof of Theorem 3.2.10. We follow the same procedure. Applying Hilbert unique-
ness method, we can estabish the observability inequality:

||V (0)||2(L2×H−1)n ≤ C

∫ T

0

∫
ω

|B∗V |2dxdt, (3.6.1)

where B∗ is the adjoint form of the matrix B, and V = (V1, · · · , Vs)t ∈ Rn1 ×· · ·×
Rns = Rn. Then we can estabilsh a similar weak observability inequality:

||V (0)||2(L2×H−1)n ≤ C

∫ T

0

∫
ω

|B∗V |2dxdt+ C||V (0)||2(H−1×H−2)n . (3.6.2)
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Then argue by contradiction. Suppose that the weak observability inequality is
false, then there exists a sequence (V k(0))k∈N such that

||V k(0)||2(L2×H−1)n = 1, (3.6.3)

∫ T

0

∫
ω

|B∗V k|2dxdt→ 0, (3.6.4)

||V k(0)||2(H−1×H−2)n → 0. (3.6.5)

Hence, there are s microlocal defect measures (µi)
s
i=1 corresponding to Vi.∫ T

0

∫
ω

|B∗V k|2dxdt =

∫ T

0

∫
ω

|
s∑
i=1

B∗i V
k
i |2dxdt. (3.6.6)

Since µi and µj are singular from each other, for i 6= j, we know by Cauchy-Schwarz
inequality,

s∑
i=1

∫ T

0

∫
ω

|B∗i V k
i |2dxdt→ 0, (3.6.7)

which gives that BiB
∗
i µi|ω×(0,T ) = 0. Since rank(BiB

∗
i ) = rank(Bi) = ni, we know

BiB
∗
i is invertible. Hence we know µi|ω×(0,T ) = 0. The rest of the proof is similar

to the single control case.

3.7 Appendix I: Proof of Proposition 3.6.1

Proof of Proposition 3.6.1. First, we calculate the form of [D|B]:

[D|B] =[Dn−1B| · · · |DB|B]

=

 dn−1
1 B1 · · · B1
... . . . ...

dn−1
s Bs · · · Bs


Now we define ri = rank(Bi). Thus, for each i, we can find invertible matrices Pi

of size ni× ni and Qi of size m×m such that PiBiQi =

(
Idri 0
0 0

)
def
= Ei. Then

define P = diag(P1, · · · , Ps) and Q = diag(Q1, · · · , Qs). We know that P and Q
are invertible. Hence, we obtain rank[D|B] = rank(P [D|B]Q). Now we rewrite
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that

P [D|B]Q =

 dn−1
1 P1B1Q1 · · · P1B1Qs

... . . . ...
dn−1
s PsBsQ1 · · · PsBsQs


=

 dn−1
1 E1 · · · P1B1Qs
... . . . ...

dn−1
s PsBsQ1 · · · Es


Now, consider the general term PiBiQj:

PiBiQj = PiBiQiQ
−1
i Qj = EiQ

−1
i Qj.

Hence,

P [D|B]Q =

 dn−1
1 E1 · · · E1Q

−1
1 Qs

... . . . ...
dn−1
s EsQ

−1
s Q1 · · · Es


Now we define the column transform T1:

T1 =


Idn1 − 1

d1
Q−1

1 Q2 · · · − 1
dn−1

1

Q−1
1 Qs

0 Idn2 · · · 0
...

... . . . ...
0 0 · · · Idns


It is easy to see that T1 is invertible and rank(P [D|B]Q) = rank(P [D|B]QT1).

P [D|B]QT1

=


dn−1

1 E1 0 · · · 0

dn−1
2 E2Q

−1
2 Q1 (

dn−1
2

d2
− dn−1

2

d1
)E2 · · · (

dn−1
2

dn−1
2

− dn−1
2

dn−1
1

)E2Q
−1
2 Qs

...
... . . . ...

dn−1
s EsQ

−1
s Q1 · · · · · · (d

n−1
s

dn−1
s
− dn−1

s

dn−1
1

)Es

 .
Step by step, we can do the Gaussian elimination and find an invertible matrix T
such that:

P [D|B]QT =


dn−1

1 E1 0 · · · 0
∗ dn−1

2 ( 1
d2
− 1

d1
)E2 · · · 0

...
... . . . ...

∗ ∗ · · · dn−1
s

∏s−1
i=1 ( 1

ds
− 1

di
)Es

 .
Then rank[D|B] = rank(P [D|B]Q) = rank(P [D|B]Q) =

∑s
i=1 ri ≤

∑s
i=1 ni.

Hence, n = rank[D|B] =
∑s

i=1 ri ≤
∑s

i=1 ni = n. This implies that rank[D|B] =
n⇐⇒ ∀i, ri = ni.
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3.8 Appendix II: Extension of Proposition 3.5.12
This section is based on the proof given by Romain Joly. The author would express
the sincere gratitude to him for his valuable advice and detailed suggestions. In
this section, we would like to remove the dimension restrictions in the Proposition
3.5.12.

Proposition 3.8.1. Suppose that we fix one metric g0 and the associated Laplacian
∆g0 with its spectrum σ(∆g0). Then the set Guc = {g ∈ M : σ(∆g) ∩ σ(∆g0) = ∅}
is residual inM.

Proof. As usual, we apply the Theorem 3.5.9. We identify the metric space G with
the space of all symmetric positive definite matrices. As we present in section
3.5.4, we define the map Eλ : H2(Ω) ∩H1

0 (Ω)\{0} ×M→ L2. Now we only need
to check that 0 is a regular value for Eλ. In the following, we will use D1 to denote
the differential in the direction of H2(Ω)∩H1

0 (Ω) and D2 to denote the differential
in the direction ofM.

Now let us check that the image of D2Eλ is dense in dimension 2. We will use
the conformal variations of the metric g. Here we choose r ∈ C∞0 (Ω)(similarly sa
we presented in section 3.5.4)

D2Eλ(rg) = −dr∆gu+ (d− 2)div(r∇gu). (3.8.1)

Since we have ∆u = −λu, we obtain that D2Eλ(rg) = drλu + (d − 2)div(r∇gu).
Let us assume that v is orthogonal to D2Eλ(rg) for all r, then:

0 =

∫
Ω

vD2Eλ(rg)dµg

=

∫
Ω

v(−drλu+ (d− 2)div(r∇gu))dµg

= −
∫

Ω

r(dλuv + (d− 2)∇gv · ∇gu)dµg.

(3.8.2)

Therefore, we obtain that dλuv + (d − 2)∇gv · ∇gu = 0. Since u 6= 0, we obtain
that the normal derivative of u cannot be identically 0 on the entire boundary.
Suppose that at x0 ∈ ∂Ω, ∇gu|Ω(x0) 6= 0. Let α(t) be the integral curve for the
field ∇gu passing through x0. Then the equation becomes the ODE(d>2):

dλu(α(t))v(α(t)) + (d− 2)
d(v(α(t)))

dt
= 0.

Combining with the Dirichlet boundary condition for v, we obatin that v ≡ 0,
which implies that 0 is a regular value of Eλ.
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Chapter 4

Controllability of a coupled wave
system with a single control and
different speeds

4.1 Introduction and Main Results

4.1.1 General setting

Let Ω ⊂ Rd, d ∈ N∗, be a bounded and smooth domain. We use ∆ to denote the
canonical Laplace operator on Ω, and ∆D to denote the Laplace operator with
domain H2(Ω)∩H1

0 (Ω). Let �1 = ∂2
t −d1∆ and �2 = ∂2

t −d2∆ be two d’Alembert
operators with different constant speeds d1 6= d2. Let n1, n2 be two integers and
n = n1 + n2. We assume that ω is a nonempty open subset of Ω and that T > 0
is a final time horizon. In this article, we aim to deal with some controllability
properties of the following type of coupled wave systems:

�1U1 + A1U2 = 0 in (0, T )× Ω,
�2U2 + A2U2 = bf1ω in (0, T )× Ω,
U1 = U2 = 0 on (0, T )× ∂Ω,
(U1, U2)|t=0 = (U0

1 , U
0
2 ) in Ω,

(∂tU1, ∂tU2)|t=0 = (U1
1 , U

1
2 ) in Ω.

(4.1.1)

For j = 1, 2, we use Uj =

 uj1
...
ujnj

 to denote the solutions corresponding to the

speed dj. f ∈ L2((0, T )× ω) is the control function, which is a scalar control and
acts on (0, T ) × ω. A1 ∈ Mn1,n2(R) and A2 ∈ Mn2(R) are two given coupling
matrices and b ∈ Rn2 . Note that System (4.1.1) is a particular case of systems of
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the form  (∂2
t −D∆)U + AU = b̂f1ω in (0, T )× Ω,

U = 0 on (0, T )× ∂Ω,
(U, ∂tU)|t=0 = (U0, U1) in Ω,

(4.1.2)

with here

D =

(
d1Idn1 0

0 d2Idn2

)
n×n

, A =

(
0 A1

0 A2

)
n×n

, and b̂ =

(
0
b

)
n×1

, (4.1.3)

where n = n1+n2. Let us emphasize the following important and crucial properties
of System (4.1.1): all coefficients are constant, the coupling is in a block-cascade
structure (notably, the control f is only acting directly on U2, which itself acts
on U1 through the matrix A1), and we restrict to the case of a scalar control (i.e.
f ∈ L2((0, T ),Rm) with m = 1). We will explain in conclusion the difficulties to
treat more general cases.

4.1.2 Geometric assumptions

For our concerned domain Ω, we assume that Ω has no infinite order of tangen-
tial contact with the boundary. This assumption will be made more precise in
Subsection 4.2.3. In fact, this assumption is sufficient to ensure the existence and
uniqueness of the general bicharateristics passing through a given point in the
phase space. Furthermore, for the control set ω, we assume the Geometric Control
Condition (GCC).

Definition 4.1.1. For ω ⊂ Ω and T > 0, we shall say that the triple (ω, T, p)
satisfies GCC if every generalized bicharacteristic of p meets ω in a time t < T ,
where p is the principal symbol of �.

We shall give a precise definition of the generalized bicharacteristics in Subsec-
tion 4.2.3. In the case of an internal control, GCC was firstly raised in [45] as a
necessary condition for the controllability of the scalar wave equation from ω, and
was proved to be sufficient in [8]. The case of a boundary control was studied in
[10, 14].

4.1.3 Kalman conditions

In this part, we recall some Kalman rank conditions introduced in the literature
of coupled parabolic systems and the link between them. First of all, we recall the
usual Kalman rank condition for the controllability of linear autonomous ordinary
differential equations (see e.g. [27]).
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Definition 4.1.2 (Usual algebraic Kalman rank condition). Let m,n be two pos-
itive integers. Assume X ∈ Mn(R) and Y ∈ Mn,m(R). We introduce the Kalman
matrix associated with X and Y given by [X|Y ] = [Xn−1Y | · · · |XY |Y ] ∈Mn,nm(R).
We say that (X, Y ) satisfies the Kalman rank condition if [X|Y ] has full rank.

In order to generalize this usual algebraic Kalman rank condition, we introduce
the Kalman operator (see [6]).

Definition 4.1.3 (Kalman operator). Assume that X ∈Mn(R) and Y ∈Mn,m(R).
Moreover, let D ∈ Mn(R) be a diagonal matrix. Then, the Kalman operator as-
sociated with (−D∆D + X, Y ) is the matrix operator K = [−D∆D + X|Y ] :
D(K ) ⊂ (L2)nm → (L2)n), where the domain of the Kalman operator is given by
D(K ) = {u ∈ (L2(Ω))nm : K u ∈ (L2(Ω))n}.
Definition 4.1.4 (Operator Kalman rank condition). We say that the Kalman
operator K satisfies the operator Kalman rank condition if Ker(K ∗) = {0}.

The operator Kalman rank condition can be reformulated as follows.

Proposition 4.1.5. [6, Proposition 2.2] The operator Kalman rank condition
Ker(K ∗) = {0} is equivalent to the following spectral Kalman rank condition:

rank[(λD +X)|Y ] = n,∀λ ∈ σ(−∆D).

In particular, let C > 0 be a constant and D = CIdn. Then, the operator Kalman
rank condition is equivalent to the usual algebraic Kalman rank conditionon (X, Y )
given in Definition 4.1.2 (see [6, Remark 1.2]).

In the following proposition, we give an equivalent statement of the operator
Kalman rank condition associated with System (4.1.1), which is very specific to
our particular coupling structure and the fact that we have a single control.

Proposition 4.1.6. We use the same notations (D,A, b̂) as in (4.1.3). We denote
by K = [−D∆D + A|b̂] the Kalman operator associated with the System (4.1.2).
Then, Ker(K∗) = {0} is equivalent to satisfying all the following conditions:

1. n1 = 1;

2. (A2, b) satisfies the usual Kalman rank condition (See Definition 4.1.2);

3. Assume that A1 = α = (α1, · · · , αn2). Then, ∀λ ∈ σ(−∆D), α satisfies

α

(
n2−2∑
k=0

(d1 − d2)kλk
n2∑

j=k+1

ajA
j−1−k
2 + (d1 − d2)n2−1λn2−1Idn2

)
b 6= 0,

(4.1.4)
where (aj)0≤j≤n2 are the coefficients of the characteristic polynomial χ(X)
of the matrix A2, i.e. χ(X) = Xn2 +

∑n2−1
j=0 ajX

j, with the convention that
an2 = 1.
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We shall give the proof in Appendix 4.6.
Since we consider the control problem in a domain Ω with boundary, it is

natural for us to introduce the following Hilbert spaces Hs
Ω(∆D).

Definition 4.1.7. We denote by (β2
j )j∈N∗ the non-decreasing sequence of (positive)

eigenvalues of −∆D, repeated with multiplicity, and (ej)j∈N∗ an orthonormal basis
of L2(Ω) made of eigenfunctions associated with (β2

j )j∈N∗:

−∆ej = β2
j ej, ej(x) = 0, x ∈ ∂Ω, ||ej||L2(Ω) = 1.

For any s ∈ R, we denote by Hs
Ω(∆D) the Hilbert space defined by

Hs
Ω(∆D) = {u =

∑
j∈N∗

ajej;
∑
j∈N∗

β2s
j |aj|2 <∞}.

For convenience, we also denote

L k
s = (Hs

Ω(∆D))k for any s ∈ R, and k ∈ N. (4.1.5)

First, we give a necessary condition for the controllability of System (4.1.1).
Proposition 4.1.8. We denote by K = [−D∆D + A|b̂] the Kalman operator as-
sociated with the System (4.1.2). If K does not satisfy the operator Kalman rank
condition, then System (4.1.1) is not null-controllable, in the following sense: there
exists a quadruple

(U0
1 , U

0
2 , U

1
1 , U

1
2 ) ∈

+∞⋂
s=1

(
L n
s ×L n

s−1

)
such that for any control f ∈ L2(ω), we necessarily have

(U(T, ·), ∂tU(T, ·)) 6= (0, 0).

We shall give the proof later in the Subsection 4.2.1.
From now on, we always assume that K = [−D∆D +A|b̂] satisfies the operator

Kalman rank condition, so that we notably have n1 = 1. Before we give a precise
definition of the exact controllability property of System (4.1.1), we first investigate
a simpler system. For a fixed 1 ≤ s ≤ n2, we consider the following system

�1u
1
1 +

∑s
j=1 αsu

2
j = 0 in (0, T )× Ω,

�2u
2
1 + u2

2 = 0 in (0, T )× Ω,
...
�2u

2
n2−1 + u2

n2
= 0 in (0, T )× Ω,

�2u
2
n2
−
∑n2

j=1 an2+1−ju
2
j = f1ω in (0, T )× Ω,

u1
1 = 0 on (0, T )× ∂Ω,
u2
j = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n2,

(u1
1, u

2
1, · · · , u2

n2
)|t=0 = (u1,0

1 , u2,0
1 , · · · , u2,0

n2
) in Ω,

(∂tu
1
1, ∂tu

2
1, · · · , ∂tu2

n2
)|t=0 = (u1,1

1 , u2,1
1 , · · · , u2,1

n2
) in Ω.

(4.1.6)
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Here we have, A1 = (α1, · · · , αs, 0, · · · , 0) and

A2 =


0 1 0 0

0 0
. . . 0

... . . . . . . 1
−an · · · −a2 −a1

 , and b =


0
...
0
1


The control is f ∈ L2((0, T ) × ω). For this simpler system (4.1.6), taking zero
initial conditions (that belong to any linear subspace and hence to any potential
state space) together with a forcing term f in the space L2((0, T )×ω), which kind
of target spaces will the solutions of System (4.1.6) arrive in? That is the first
question we need to answer in order to be able to obtain an exact controllability
result in an appropriate state space. Under this particular structure of coupling,
we introduce appropriate compatibility conditions for System (4.1.6). For r = 0, 1,
and (u, v1, · · · , vn2) ∈ Hn2−s+2+r

Ω (∆D)×Hn2−1+r
Ω (∆D)×· · ·×Hr

Ω(∆D), let us define
a special function U r

comp by

U r
comp =

(
(−d1∆)n2−s+1u

+

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lvj+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lvj+k+l

)
.

(4.1.7)
Using this special function U r

comp, let us denote by Hs
r the following space:

Hs
r = {(u, v1, · · · , vn2) ∈ Hn2−s+2+r

Ω (∆D)×Hn2−1+r
Ω (∆D)× · · · ×Hr

Ω(∆D)

s.t. U r
comp ∈ Hr

Ω(∆D)}.
(4.1.8)

Definition 4.1.9 (State space). The state space for System (4.4.1) is defined by

Hs
1 ×Hs

0.

The two conditions

U1
comp(u

1,0
1 , u2,0

1 , · · · , u2,0
n2

) ∈ H1
Ω(∆D),

U0
comp(u

1,1
1 , u2,1

1 , · · · , u2,1
n2

) ∈ H0
Ω(∆D)

are called the compatibility conditions for the controllability of System (4.4.1).
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Remark 4.1.10. If s = n2, the compatibility conditions reduce to

−d1∆u1,0
1 ∈ H1

Ω(∆D),

−d1∆u1,1
1 ∈ H0

Ω(∆D),

which is an empty condition since we already know that (u1
0, u

1
1) ∈ H3

Ω(∆D) ×
H2

Ω(∆D).

Remark 4.1.11. As we will see later on, the solutions of System (4.1.6) will
stay in Hs

1 × Hs
0 if the initial states are in this space. Because of the linearity

and the time reversibility of the system, exact controllability is equivalent to null
controllability or reachability from 0 for System (4.1.6). Since the equilibrium 0 is
of course in the spaces Hs

1 ×Hs
0, this is the appropriate state space.

Remark 4.1.12. Since we consider a system with a cascade coupling structure, it
is natural that there is a gain of regularity for the uncontrolled states u2

j (2 ≤ j ≤
n2) (this phenomena has already been observed notably in [20, Theorem 1.4]). We
shall explain the gain of two derivatives of regularity for the state u1

1 in Subsec-
tion 4.2.2. We could call it “additional regularity”.

Now, we give the definition of the exact controllability of System (4.1.1).

Definition 4.1.13. We say that System (4.1.1) is exactly controllable in time
T > 0 if there exists 1 6 s 6 n2 and T ∈ GLn(R) such that for any initial data
(U0, U1) ∈ T −1(Hs

1) × T −1(Hs
0) and any target (Ũ0, Ũ1) ∈ T −1(Hs

1) × T −1(Hs
0),

there exists a control function f ∈ L2((0, T ) × ω) such that the solution U of
(4.1.1) satisfies (U, ∂tU)|t=0 = (U0, U1) and (U, ∂tU)|t=T = (Ũ0, Ũ1), and T (U) is
a solution of the associated System (4.1.6) with an appropriate control f̃ .

Remark 4.1.14. By the definition above, in order to prove the controllability of
System (4.1.1), we first look for an invertible transform to change the system into
the simpler but equivalent System (4.1.6). Then, we prove the result for the simpler
System (4.1.6) to conclude the exact controllability of the general System (4.1.1).

Remark 4.1.15.

We shall see later that the transform T is just(
1 0
0 P

)
,

where P ∈ GLn2(R) is the transform associated with the Brunovský normal form
defined in Theorem 4.3.1. Here we can give an example of the transform T under
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a simple setting. If we consider a particular case of System (4.1.1) given by

�1u
1
1 − 2u2

1 + u2
2 = 0 in (0, T )× Ω,

�2u
2
1 + 3

2
u2

1 − 1
2
u2

2 = 2f1ω in (0, T )× Ω,
�2u

2
2 + 9

2
u2

1 − 3
2
u2

2 = 4f1ω in (0, T )× Ω,
u1

1 = 0 on (0, T )× ∂Ω
u2
j = 0 on (0, T )× ∂Ω, j = 1, 2,

(u1
1, u

2
1, u

2
2)|t=0 = (u1,0

1 , u2,0
1 , u2,0

2 ) in Ω,

(∂tu
1
1, ∂tu

2
1, ∂tu

2
2)|t=0 = (u1,1

1 , u2,1
1 , u2,1

2 ) in Ω,

we have that

A =

(
0 A1

0 A2

)
=

 0 −2 1
0 3

2
−1

2

0 9
2
−3

2

 , and b̂ =

(
0
b

)
=

 0
2
4

 .

According to the Brunovský normal form, we obtain T2 =

(
−2 1

3
2
−1

2

)
such that

T2(A2b, b) = T2

(
1 2
3 4

)
=

(
1 0
0 1

)
.

Then the transform is given by T =

(
1 0
0 T2

)
=

 1 0 0
0 −2 1
0 3

2
−1

2

 . And more-

over, this transform T satisfies

T b̂ =

 0
0
1

 , and T AT −1 =

 0 1 0
0 0 1
0 0 0

 .

There is a large literature on the controllability and observability of the wave
equations. This paper is mainly devoted to multi-speed coupled wave systems. We
list some of the existing results and references:

• For a single wave equation posed on a smooth bounded domain of Rd and
with an internal control, one can use microlocal analysis to prove the ob-
servability inequality as done by Bardos, Lebeau and Rauch in [8]. We have
two approaches to define the microlocal defect measures. We can introduce
the microlocal defect measures based on the article by Gérard and Leicht-
nam [24] for Helmoltz equation and Burq [13] for the wave equation, using
the extension by 0 across the boundary. On the other hand, we can also use
the Melrose cotangent compressed bundle to construct the measure, based
on the article by Lebeau [31] and Burq-Lebeau [15] in the setting of systems.
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• Although we now have a better picture on the controllability of a single wave
equation, the controllability of systems of wave equations is still not totally
understood. To our knowledge, most of the references concern the case of sys-
tems with the same principal symbol� on each equation of the system, which
will be discussed in the present paragraph. Notably, Alabau-Boussouira and
Léautaud [5] studied the indirect controllability of two coupled wave equa-
tions, in which their controllability result was established using a multi-level
energy method introduced in [2], and also used in [3, 4]. Liard and Lissy
[37] studied the observability and controllability for coupled wave systems
with constant coefficients under Kalman type rank conditions. In the case of
space-varying coefficients, Cui, Laurent, and Wang [19] studied the observ-
ability of wave equations coupled by space-varying first or zero order terms,
on a compact manifold. Their results are extended to the case of manifold
with boundaries in [18].

• Concerning the multi-speed case, Dehman, Le Roussau, and Léautaud con-
sidered two coupled wave equations on a compact manifold in [20]. Lissy and
Zuazua [40] proved some general weak observability estimates for wave sys-
tems with constant or time-dependant coupling terms. Niu [44] investigated
the case of the simultaneous controllability of wave systems, with different
speeds and coupling terms involving only the controls, under various condi-
tions on the speeds. Notably, in the case of constant speeds, a necessary and
sufficient condition involving a Kalman rank condition was obtained, in the
same spirit as in the present article.

• Concerning the boundary controllability of the coupled wave systems, we
would like to refer to the works by Tatsien Li and Bopeng Rao, especially
their work on the synchronisation of waves. In [32] and [33], Li and Rao for
the first time studied the synchronization for systems described by PDEs.
Taking a coupled system of wave equations with Dirichlet boundary controls
as an example, they proposed the concept of exact boundary synchronization
by boundary controls. After that, they and their collaborators successively
got quite a lot of results (for instance, see [34, 36]). In particular, in [35], the
authors obtain necessary conditions, presented as a criteria of Kalman’s type,
to the approximate null controllability, the approximate synchronization,
respectively, for a coupled system of wave equations with Dirichlet boundary
controls, which also show the link between the controllability of coupled wave
systems and some appropriate Kalman conditions.

4.1.4 Main result

Our main result is the following one.
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Theorem 4.1.16. Given T > 0, suppose that:

(i) (ω, T, pdi) satisfies GCC, where pdi is the principal symbol of �i, i = 1, 2.

(ii) Ω has no infinite order of tangential contact with the boundary.

(iii) The Kalman operator K = [−D∆D + A|b̂] associated with System (4.1.1)
satisfies the operator Kalman rank condition, i.e. Ker(K∗) = {0}.

Then System (4.1.1) is exactly controllable in the sense of Definition 4.1.13.

Remark 4.1.17. • We will explain the concept of order of contact in the next
section.

• Assume that conditions (i) and (ii) are verified. Then, condition (iii) is
also necessary to have exact controllability in the sense of Definition 4.1.13.
Indeed, if (iii) is not verified, Proposition 4.1.8 provides a smooth initial
condition (that is notably in the state space introduced in Definition 4.1.13)
that is not null-controllable.

• In fact, our proof also provides a controllability result for systems of wave
equations with a single speed, of the form

�2U2 + A2U2 = bf1ω in (0, T )× Ω,
U2 = 0 on (0, T )× ∂Ω,
U2|t=0 = (U0

1 , U
0
2 ) in Ω,

∂tU2|t=0 = (U1
1 , U

1
2 ) in Ω.

(4.1.9)

If (A2, b) does not verify the usual Kalman rank condition given in Definition
4.1.2, then this system is not exactly controllable in the same sense as in
Proposition 4.1.8, with the same proof. If (A2, b) verifies the usual Kalman
rank condition, the state state space is

P−1(H̃s
1)× P−1(H̃s

0),

where P is the transform associated with the Brunovský normal form defined
in Theorem 4.3.1 and H̃s

r (r = 1, 2) is given by

H̃s
r = {(v1, · · · , vn2) ∈ Hn2−1+r

Ω (∆D)× · · · ×Hr
Ω(∆D)}.

Then, System (4.1.9) is exactly controllable under this Kalman rank con-
dition. This is a very particular case of the more general result proved in
[18], where space-varying coefficients, multi-dimensional controls and also
one-order coupling terms are considered.
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4.1.5 Outline of the chapter

The outline of this chapter is the following.
Section 4.2 is devoted to introducing some preliminaries. In Subsection 4.2.1,

we present the necessity of the operator Kalman rank condition by giving the proof
of Proposition 4.1.8. Then Subsection 4.2.2 is devoted to the “additional regularity”
property for coupled wave equations. Subsection 4.2.3 includes the description of
the boundary points, and give the precise definition of general bicharacteristics and
the order of tangential contact with the boundary. Subsection 4.2.4 introduces the
microlocal defect measures, which is the basic tool for our proof.

In Section 4.3, we focus on the special case n2 = 2 to show the whole procedure
of the proof of the controllability of the coupled wave system. Subsection 4.3.1
is devoted to reformulating the system with the help of the Brunovský normal
form. Then in Subsection 4.3.2 we introduce the simpler system with one of the
parameters being 0. We demonstrate the proof under this simple setting. In the
following Subsection 4.3.3, we present the result of the general systems in a way
very similar to the simpler case.

In Section 4.4, we plan to deal with any number of equations. Subsection 4.4.1
provides the corresponding simpler system in analogue with the Subsection 4.3.2
and gives the clear meaning of the compatibility conditions under the general
setting. Then, with the help of the compatibility conditions, we are able to present
the proof of the controllability result of Theorem 4.4.8. In the Subsection 4.4.2,
we give the reformulation procedure of the general system.

In the concluding Section 4.5, we give some open problems related to our work,
and explanations on the difficulties to solve them.

4.2 Preliminaries

We divide this section into four parts. The first part is devoted to proving the ne-
cessity of the operator Kalman rank condition. Then, we consider the regularities
of the solutions of two coupled wave equations with different speeds. The third
part aims to introduce the geometric preliminaries including the conceptions of
general bicharacteristics and order of contact. The final part mainly contains the
definition and some properties of the microlocal defect measures.

4.2.1 On the necessity of the operator Kalman rank condi-
tion

In this section, we are going to give the proof of Proposition 4.1.8. At first, we
introduce the following proposition for the ordinary differential systems of second
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order.

Proposition 4.2.1. If (A, b) does not satisfy the usual algebraic Kalman rank
condition (see Definition 4.1.2), for any nonzero initial data (y0, y1) 6= (0, 0), the
ordinary differential system{

d2y
dt2

= A∗y in (0, T ),

(y, dy
dt

)|t=0 = (y0, y1),
(4.2.1)

has a nonzero solution satisfying b∗y(t) = 0 for every t ∈ (0, T ).

Proof. Define z =

(
y
dy
dt

)
. Then, we are able to rewrite System (4.2.1) into a

first-order system: {
dz
dt

= Ã∗z in (0, T )
z|t=0 = t(y0, y1),

(4.2.2)

where Ã =

(
0 A
Idn 0

)
2n×2n

. Let b̃ =

(
b
0

)
2n×1

. Easy computations give that

Ã2k =

(
Ak 0
0 Ak

)
and Ã2k+1 =

(
0 Ak+1

Ak 0

)
for k = 0, 1, · · · .

Therefore, we obtain

[Ã|b̃] = (Ã2n−1b̃| · · · |Ãb̃|b̃) =

(
0 An−1b · · · 0 b

An−1b 0 · · · b 0

)
.

As a consequence, we know that rank[Ã|b̃] = 2rank[A|b]. Since (A, b) does not
satisfy the usual algebraic Kalman rank condition, i.e., rank[A|b] < n, we deduce
that rank[Ã|b̃] < 2n, which implies that (Ã, b̃) does not satisfy the usual algebraic
Kalman rank condition. By duality, this means that (4.2.2) is not observable
through b̃.

Thus, there exists a nonzero solution ζ(t) =

(
ζ1(t)
ζ2(t)

)
∈ R2n to the associated

adjoint system dz
dt

= Ã∗z satisfying that b̃∗ζ(t) = 0 for every t ∈ (0, T ). Then,
setting y(t) = ζ1(t), we derive a nonzero solution y(t) of System (4.2.1) satisfying
that b∗y(t) = b∗ζ1(t) = b̃∗ζ(t) = 0 for every t ∈ (0, T ).

Now, we go back to the proof of Proposition 4.1.8.

Proof of Proposition 4.1.8. According to Proposition 4.1.5, since K = [−D∆D +
A|b̂] does not satisfy the operator Kalman rank condition, there exists λ0 ∈
σ(−∆D) such that rank[(λ0D−A)|b̂] < n. As a consequence of Proposition 4.2.1,
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there exists a nonzero solution χλ0(t) ∈ Rn to the following ordinary differential
system: {

d2χ
dt2

= (λ0D − A∗)χ in (0, T ),

(χ, dχ
dt

)|t=0 = (χ0, χ1) 6= (0, 0),

satisfying b̂∗χλ0(t) = 0 for every t ∈ (0, T ). Then, let Φ(t, x) = χλ0(t)ϕλ0(x),
where ϕλ0 is an eigenfunction of −∆D associated with λ0. Therefore, Φ satisfies
the following system:

(∂2
t −D∆ + A∗)Φ = 0 in Ω,

b̂∗Φ = 0 for every t ∈ (0, T ),
Φ|∂Ω = 0,
(Φ, ∂tΦ)|t=0 = (χ0ϕλ0 , χ

1ϕλ0) in Ω.

(4.2.3)

Suppose that there exists f ∈ L2((0, T )× ω) such that the corresponding solution
U to (4.1.2) with initial state (U0, U1) satisfies

(U, ∂tU)|t=T = (0, 0). (4.2.4)

Then, by (4.1.2), we have

((∂2
t −D∆D + A)U,Φ)L2((0,T )×Ω) = (b̂f1ω,Φ)L2((0,T )×Ω).

Integrating by parts on the left-hand side and using (4.2.3) together with (4.2.4)
leads to

(U0, χ1ϕλ0)L2(Ω) − (U1,−χ0ϕλ0)L2(Ω) = (b̂f1ω,Φ)L2((0,T )×Ω).

Since b̂∗Φ = 0 for every t ∈ (0, T ), we obtain that

(U0, χ1ϕλ0)L2(Ω) − (U1, χ0ϕλ0)L2(Ω) = 0.

Choosing (U0, U1) = (χ1ϕλ0 ,−χ0ϕλ0) leads to (|χ1|2 + |χ0|2) ||ϕλ0||2L2(Ω) = 0, which
is a contradiction with (χ0, χ1) 6= 0.

4.2.2 On the regularity of coupled wave equations

Before investigating more complicated situations, let us concentrate on the regu-
larity properties of the following simple system:

�1u1 + u2 = 0 in (0, T )× Ω,
�2u2 = f in (0, T )× Ω,
u1 = 0, u2 = 0 on (0, T )× ∂Ω,
(u1, ∂tu1, u2, ∂tu2)|t=0 = (u0

1, u
1
1, u

0
2, u

1
2) in Ω.

(4.2.5)
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Our next result gives a property of regularity for the solution of System (4.2.5).
Such kind of extra regularity result was also observed in [20, Theorem 1.4], in which
the authors stated the corresponding result in the case of a compact manifold
without boundary. Here we will present a different (and more elementary) proof.

Lemma 4.2.2. Assume that the initial conditions satisfy

(u0
1, u

1
1, u

0
2, u

1
2) ∈ Hσ+3

Ω (∆D)×Hσ+2
Ω (∆D)×Hσ+1

Ω (∆D)×Hσ
Ω(∆D). (4.2.6)

Then, there exists a unique solution to System (4.2.5) satisfying

u1 ∈ C1([0, T ], Hσ+2
Ω (∆D)) ∩ C0([0, T ], Hσ+3

Ω (∆D)),

u2 ∈ C1([0, T ], Hσ
Ω(∆D)) ∩ C0([0, T ], Hσ+1

Ω (∆D)).
(4.2.7)

Proof. Since u2 satisfies a wave equation with a source term f ∈ L1((0, T ), Hσ
Ω(∆D)),

it is classical that there exists a unique solution

u2 ∈ C1([0, T ], Hσ
Ω(∆D)) ∩ C0([0, T ], Hσ+1

Ω (∆D))

to the second line of System (4.2.5). Now, let us consider the first equation

�1u1 = −u2 (4.2.8)

as a wave equation with a source term u2 ∈ L1((0, T ), Hσ+1
Ω (∆D)). Thus, we know

that there exists a unique solution u1 ∈ C1([0, T ], Hσ+1
Ω (∆D))∩C0([0, T ], Hσ+2

Ω (∆D)).
Now, we need to state an extra regularity property for u1. Applying the d’Alembert
operator �2 on both sides of (4.2.8), we obtain that

�2�1u1 = −�2u2.

Since �2u2 = f , we know that �1(�2u1) = −f . We decompose �2u1 into two
parts �2u1 = �1u1 + (d1 − d2)∆Du1. Hence, we obtain that

�2u1 = −u2 + (d1 − d2)∆Du1. (4.2.9)

Now, by using (4.2.6), we remark that the initial condition for �2u1 verifies:

�2u1|t=0 = −u2|t=0 + (d1 − d2)∆Du1|t=0

= −u0
2 + (d1 − d2)∆Du

0
1 ∈ Hσ+1

Ω (∆D),

∂t(�2u1)|t=0 = −∂tu2|t=0 + (d1 − d2)∆D∂tu1|t=0

= −u1
2 + (d1 − d2)∆Du

1
1 ∈ Hσ

Ω(∆D).

So, we know that �2u1 ∈ C1([0, T ], Hσ
Ω(∆D))∩C0([0, T ], Hσ+1

Ω (∆D)). In addition,
we also know that −�1u1 = u2 ∈ C1([0, T ], Hσ

Ω(∆D)) ∩ C0([0, T ], Hσ+1
Ω (∆D)).

Hence, we obtain that

∆Du1 =
1

d1 − d2

(�2 −�1)u1 ∈ C1([0, T ], Hσ
Ω(∆D)) ∩ C0([0, T ], Hσ+1

Ω (∆D)).

We conclude that u1 ∈ C1([0, T ], Hσ+2
Ω (∆D)) ∩ C0([0, T ], Hσ+3

Ω (∆D)).
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4.2.3 Generalized bicharacteristics

This part has many repeated contents as we have already presented in
Section 2.3 of Chapter 1 .
As usual, for a variable y, we denote Dy = i∂y. Let B = {y ∈ Rd : |y| < 1} be
the unit euclidean ball in Rd. In a tubular neighbourhood of the boundary, we
can identify M = R × Ω locally as X = (0, 1) × B and ∂M = R × ∂Ω locally
as {0} × B. Now, we consider R = R(x, y,Dy) which is a second order scalar,
self-adjoint, classical, tangential and smooth pseudo-differential operator, defined
in a neighbourhood of [0, 1)×B with a real principal symbol r(x, y, η), such that

∂r

∂η
6= 0 for (x, y) ∈ [0, 1)×B and η 6= 0. (4.2.10)

Let Q0(x, y,Dy), Q1(x, y,Dy) be smooth classical tangential pseudo-differential
operators defined in a neighbourhood of [0, 1)×B, of order 0 and 1, and principal
symbols q0(x, y, η), q1(x, y, η), respectively. Denote P = (∂2

x + R)Id+Q0∂x +Q1.
The principal symbol of P is

p = −ξ2 + r(x, y, η). (4.2.11)

We use the usual notations TM and T ∗M to denote the tangent bundle and
cotangent bundle corresponding to M , with the canonical projection π

π : TM( or T ∗M)→M.

Denote r0(y, η) = r(0, y, η). Then, we can decompose T ∗∂M into the disjoint
union E ∪ G ∪ H, where

E = {r0 < 0}, G = {r0 = 0}, H = {r0 > 0}. (4.2.12)

The sets E , G, H are called elliptic, glancing, and hyperbolic set, respectively.
Define

Char(P ) = {(x, y, ξ, η) ∈ T ∗Rd+1|M : ξ2 = r(x, y, η)} (4.2.13)

to be the characteristic manifold of P . For more details, one can refer to [15] and
[44]. Notice that in [13], one can see another characterization for these sets E , G,
and H.

To describe the different phenomena when a bicharacteristic approaches the
boundary, we need a more accurate decomposition of the glancing set G. Let
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r1 = ∂xr|x=0. Then, we can define the decomposition G =
⋃∞
j=2 Gj, with

G2 = {(y, η) : r0(y, η) = 0, r1(y, η) 6= 0},
G3 = {(y, η) : r0(y, η) = 0, r1(y, η) = 0, Hr0(r1) 6= 0},

...
Gk+3 = {(y, η) : r0(y, η) = 0, Hj

r0
(r1) = 0,∀j ≤ k,Hk+1

r0
(r1) 6= 0},

...
G∞ = {(y, η) : r0(y, η) = 0, Hj

r0
(r1) = 0,∀j}.

HereHj
r0
is just the Hamiltonian vector fieldHr0 associated to r0 composed j times.

Moreover, for G2, we can define G2,± = {(y, η) : r0(y, η) = 0,±r1(y, η) > 0}. Thus
G2 = G2,+∪G2,−. For ρ ∈ G2,+, we say that ρ is a gliding point and for ρ ∈ G2,−, we
say that ρ is a diffractive point. For ρ ∈ Gj, j ≥ 2, we say that a bicharacteristic
of p tangentially contacts the boundary {x = 0} ×B with order j at the point ρ.

We have the definition of the generalized bicharacteristics (See [26, Section
24.3] for more details):

Definition 4.2.3. A generalized bicharacteristic of p is a map:

s ∈ I\D 7→ γ(s) ∈ T ∗M ∪ G,

where I is an interval on R and D is a discrete subset I, such that p ◦ γ = 0 and
the following properties hold:

1. γ(s) is differentiable and dγ
ds

= Hp(γ(s)) if γ(s) ∈ T ∗M\T ∗∂M or γ(s) ∈
G2,+.

2. Every s ∈ D is isolated ,i.e., there exists ε > 0 such that γ(s) ∈ T ∗M\T ∗∂M
if 0 < |s− t| < ε, and the limits γ(s±) are different points in the same fiber
of T ∗∂M .

3. γ(s) is differentiable and dγ
ds

= H−r0(γ(s)) if γ(s) ∈ G\G2,+.

Remark 4.2.4. We denote the Melrose cotangent compressed bundle by bT ∗M and
the associated canonical map by j : T ∗M 7→ bT ∗M . j is defined by

j(x, y, ξ, η) = (x, y, xξ, η). (4.2.14)

Under this map j, one can see γ(s) as a continuous flow on the compressed cotan-
gent bundle bT ∗M . This is the so-called Melrose-Sjöstrand flow (see [15] for more
details).
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From now on we always assume that there is no infinite tangential contact
between the bicharacteristic of p and the boundary. This is in the meaning of the
following definition:

Definition 4.2.5. We say that there is no infinite contact between the bicharac-
teristics of p and the boundary if there exists N ∈ N such that the gliding set G
satisfies

G =
N⋃
j=2

Gj.

It is well-known that under this hypothesis, there exists a unique generalized
bicharacteristic passing through any point. This means that the Melrose-Sjöstrand
flow is globally well-defined. One can refer to [42] and [43] for the proof.

4.2.4 Microlocal defect measure

In this section, we will give two approaches to construct the microlocal defect
measures. The first one is based on the article by Gérard and Leichtnam [24] for
Helmoltz equation and Burq [13] for wave equations. The other one follows the
idea in the article [31] by Lebeau and we rely on the article [15] by Burq and
Lebeau for the setting of wave systems. In the first approach, we can compare
two different measures, especially the supports of two different measures. In the
later proof, it is crucial to distinguish the measures with different speeds based on
this idea. On the other hand, we use the second approach to describe the way the
polarization of one measure is turning.

Let (uk)k∈N be a bounded sequence in
(
L2
loc(R;L2(Ω))

)n, converging weakly to
0 and such that {

Puk = o(1)H−1 ,
uk|x=0 = 0.

Let uk be the extension by 0 across {x = 0}. Then the sequence uk is bounded in(
L2
loc(R;L2(Rd))

)n. Let A be the space of n× n matrices of classical polyhomoge-
neous pseudo-differential operators of order 0 with compact support in R×Rd (i.e,
A = ϕAϕ for some ϕ ∈ C∞0 (R×Rd)). Let us denote byM+ the set of nonnegative
Radon measures on T ∗(R× Rd). Following [13, Section 1], we have the existence
of the microlocal defect measure as follows:

Proposition 4.2.6 (Existence of the microlocal defect measure-1). There exists
a subsequence of (uk) (still denoted by (uk)) and µ ∈M+ such that

∀A ∈ A, lim
k→∞

(Auk, uk)L2(R×Ω) = 〈µ, σ(A)〉, (4.2.15)

where σ(A) is the principal symbol of the operator A (which is a matrix of smooth
functions, homogeneous of order 0 in the variable ξ).

108



CHAPTER 4. CONTROL OF COUPLED WAVE SYSTEMS

From [13, Théorème 15], we have the following proposition.

Proposition 4.2.7. For the microlocal defect measure µ defined above, we have
the following properties.

• The measure µ is supported Char(P )∩ (R×Ω), where Char(P ) is defined in
(4.2.13).

• The measure µ does not charge the hyperbolic points in ∂M :

µ(H) = 0.

• In particular, if n = 1, the scalar measure µ is invariant along the generalized
bicharacteristic flow.

On the other hand, let A be the space of n× n matrices of pseudo-differential
operators of order 0, in the form of A = Ai + At, with Ai a classical pseudo-
differential operator with compact support in M(i.e, Ai = ϕAiϕ for some ϕ ∈
C∞0 (M)) and At a classical tangential pseudo-differential operator in M(i.e., At =
ϕAtϕ for some ϕ ∈ C∞(M)). Then denote

Z = j(Char(P )), Ẑ = Z ∪ j(T ∗M |x=0),

where j is defined in (4.2.14) and

SẐ = (Ẑ\M)/R∗+, SZ = (Z\M)/R∗+.

SẐ and SZ are the quotient spherical spaces of Ẑ and Z and they are locally
compact metric spaces. Here, we identify the zero section M × {0} ⊂b T ∗M with
M itself.

For A ∈ A, with principal symbol a = σ(A), define

κ(a)(ρ) = a(j−1(ρ)),∀ρ ∈ bT ∗M.

Now, we have that K = {κ(a) : a = σ(A), A ∈ A} ⊂ C0(SẐ;End(Cn)). Define
M+ to be the space of all positive Borel measures on SẐ. By duality, we know
thatM+ is the dual space of C0

0(SẐ;End(Cn)), which verifies the property:

〈µ, a〉 ≥ 0, ∀a ∈ C0(SẐ;End+(Cn)),∀µ ∈M+,

where End+(Cn) denotes the space of n×n positive hermitian matrices. Following
the article [15] by Burq and Lebeau, we obtain the existence of the microlocal defect
measure and some properties as follows:
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Proposition 4.2.8 (Existence of the microlocal defect measure-2). There exists
a subsequence of (uk) (still noted by (uk)) and µ ∈M+ such that

∀A ∈ A, lim
k→∞

(Auk, uk)L2(R×Ω) = 〈µ, κ(σ(A))〉. (4.2.16)

Lemma 4.2.9. The microlocal defect measure µ defined in Proposition 4.2.8 sat-
isfies that µ1H∪E = 0, where H is the set of hyperbolic points and E is the set of
elliptic points as defined in Subsection 4.2.3.

In the following, suppose that there is no infinite contact between the bicharac-
teristic of p and the boundary. This hypothesis implies the existence and unique-
ness of the generalized bicharacteristic passing through any point, which ensures
that the Melrose-Sjöstrand flow is globally well-defined. By a suitable change of
parameter along this flow, we obtain a flow on SZ. Consider S a hypersurface tran-
verse to the flow. Then locally, SZ = Rs×S, where s is the well-chosen parameter
along the flow. We have the following propagation lemma for the microlocal defect
measure.

Lemma 4.2.10. Assume that the microlocal defect measure µ is defined in Propo-
sition 4.2.8. Then µ is supported in SZ and there exists a function

(s, z) ∈ Rs × S 7→M(s, z) ∈ Cn

µ−almost everywhere continuous such that the pullback of the measure µ byM(i.e.,
the measure P∗µ = M∗µM defined for a ∈ C0(SZ)) by

〈M∗µM, a〉 = 〈µ,MaM∗〉

satisfies
d

ds
P∗µ = 0.

We say that the measure µ is invariant along the flow associated with M . Further-
more, the functionM is continuous, and along any generalized bicharacteristic, the
matrix M is solution to a differential equation whose coefficients can be explicitly
computed in terms of the geometry and the different terms in the operator P .

For the differential equation that M satisfies, one can refer to [15, Section 3.2]
for more details.

Remark 4.2.11. Roughly speaking, in the result above, the Frobenius norm of M
describes the damping of the measure µ, whereas the rotation component of M (i.e.
the orthogonal part of the polar decomposition) describes the way the polarization
of the measure (asymptotic polarization of the sequence (uk)) is turning.
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Remark 4.2.12. Notice that in [13, Section 3], the author considered the case of
solutions to the wave equation at the energy level (bounded in H1

loc), and hence was
considering second order operators. However, it is easy to change the energy level
into L2, one can see [44, Remark 4.4] for more details.

Remark 4.2.13. From Proposition 4.2.7, we know that supp(µ) ⊂ Char(P ). No-
tice that in the interior of M , the two definitions coincide, i.e., for any pseudo-
differential operator A of order 0 with principal symbokl σ(A) satisfying supp(σ(A)) ⊂
Char(P )|M , we have 〈µ, σ(A)〉 = 〈µ, κ(σ(A)), simply by their definitions. At the
boundary, since both measures µ and µ do not not charge the hyperbolic points in
∂M , we know that µ|SẐ = µ holds µ almost surely and µ almost surely. Under this
sense, we can identify the two measures.

4.3 Proof of the sufficient part of Theorem 4.1.16
in the case n2 = 2

In this section, we shall present the sufficient part of the proof of Theorem 4.1.16
in the case n2 = 2 (and of course n1 = 1). We divide the proof into three steps.
Firstly, we give a reformulation of System (4.3.1). Then we study a simpler problem
and obtain a compatibility condition for it. At last, we present the proof for the
general case.

4.3.1 Reformulation of the system in symmetric spaces

In the case n2 = 2, we write System (4.1.1) as follows:

.


∂2
t u

1
1 − d1∆u1

1 + α1u
2
1 + α2u

2
2 = 0 in (0, T )× Ω,

∂2
t u

2
1 − d2∆u2

1 + a11u
2
1 + a12u

2
2 = b1f1ω in (0, T )× Ω,

∂2
t u

2
2 − d2∆u2

2 + a21u
2
1 + a22u

2
2 = b2f1ω in (0, T )× Ω,

u1
1 = 0, u2

j = 0 on (0, T )× ∂Ω, j = 1, 2,

(4.3.1)

with initial conditions

(u1
1(0, x), u2

1(0, x), u2
2(0, x), ∂tu

1
1(0, x), ∂tu

2
1(0, x), ∂tu

2
2(0, x))

belonging to a space that will be detailed later on.
Before we reformulate the system, we introduce the Brunovský normal form.

Theorem 4.3.1 (Brunovský Normal Form). Assume that A is a square matrix
of size n × n, B is a matrix of size n × 1 and (A,B) satisfies the Kalman rank
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condition. Then, there exists an invertible matrix P such that A = P−1JP and
B = P−1en, where

J =


0 1 0 0

0 0
. . . 0

... . . . . . . 1
−an · · · −a2 −a1

 , and en =


0
...
0
1

 , (4.3.2)

and the coefficients (aj)1≤j≤n are defined by the characteristic polynomial of A, i.e.
χA(X) = Xn + a1X

n−1 + · · ·+ an−1X + an.

One can find for instance the proof in [50, Théorème 2.2.7] for this theorem.
Now, we set Ã, B̃, and α by

Ã =

(
a11 a12

a21 a22

)
, B̃ =

(
b1

b2

)
, and α = (α1, α2).

Then, we obtain A =

(
0 α

0 Ã

)
, B =

(
0

B̃

)
. As a consequence of (4.1.6), we

know that (Ã, B̃) satisfies the Kalman rank condition. Hence, by the Brunovský
normal form, there exists an invertible matrix P̃ such that

Ã = P̃

(
0 1
−a1 −a2

)
P̃−1, B̃ = P̃

(
0
1

)
, and α̃ = (α̃1, α̃2) = αP̃−1.

Furthermore, according to the third statement of Proposition 4.1.6, we know that

α̃2(d1 − d2)λ+ α̃1 6= 0,∀λ ∈ σ(−∆D). (4.3.3)

Using the change of unknowns ũ1
1

ũ2
1

ũ2
2

 =

(
1 0

0 P̃

) u1
1

u2
1

u2
2

 , (4.3.4)

we obtain a simplified system

�1ũ
1
1 + α̃1ũ

2
1 + α̃2ũ

2
2 = 0 in (0, T )× Ω,

�2ũ
2
1 + ũ2

2 = 0 in (0, T )× Ω,
�2ũ

2
2 − a1ũ

2
1 − a2ũ

2
2 = f1ω in (0, T )× Ω,

ũ1
1 = 0, ũ2

1 = 0, ũ2
2 = 0 on (0, T )× ∂Ω,

(ũ1
1(0, x), ũ2

1(0, x), ũ2
2(0, x))|t=0 = (ũ1,0

1 , ũ2,0
1 , ũ2,0

2 ) in Ω,

(∂tũ
1
1(0, x), ∂tũ

2
1(0, x), ∂tũ

2
2(0, x))|t=0 = (ũ1,1

1 , ũ2,1
1 , ũ2,1

2 ) in Ω.
(4.3.5)
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Therefore, the exact controllability of System (4.3.1) is equivalent to the exact
controllability of System (4.3.5). Classically, given the initial conditions

(ũ2,0
1 , ũ2,0

2 , ũ2,1
1 , ũ2,1

2 ) ∈ H2
Ω(∆D)×H1

Ω(∆D)×H1
Ω(∆D)×H0

Ω(∆D),

the solutions ũ2
1 and ũ2

2 satisfy

ũ2
1 ∈ C0([0, T ], H2

Ω(∆D)) ∩ C1([0, T ], H1
Ω(∆D)),

ũ2
2 ∈ C0([0, T ], H1

Ω(∆D)) ∩ C1([0, T ], H0
Ω(∆D)),

As for the regularity of the solution ũ1
1, it depends on the coupling term α̃1ũ

2
1+α̃2ũ

2
2.

Thus, it is natural to discuss in two different cases, i.e. α̃2 6= 0 and α̃2 = 0.

4.3.2 The case α̃2 = 0

In what follows, we will present into details the proof of Theorem 4.1.16 firstly in
the case n2 = 2 (and n1 = 1 by Proposition 4.1.6), and A1 = (α1, 0). Here, for the
sake of simplicity we remove the˜in our notations and we investigate the system

�1u
1
1 + α1u

2
1 = 0 in (0, T )× Ω,

�2u
2
1 + u2

2 = 0 in (0, T )× Ω,
�2u

2
2 − a1u

2
1 − a2u

2
2 = f1ω in (0, T )× Ω,

u1
1 = 0, u2

j = 0 on (0, T )× ∂Ω, j = 1, 2,

(u1
1, u

2
1, u

2
2)|t=0 = (u1,0

1 , u2,0
1 , u2,0

2 ) in Ω,

(∂tu
1
1, ∂tu

2
1, ∂tu

2
2)|t=0 = (u1,1

1 , u2,1
1 , u2,1

2 ) in Ω.

(4.3.6)

For this system, we have the following well-posedness property.

Proposition 4.3.2. Assume that the initial conditions satisfy

(u2,0
1 , u2,0

2 , u2,1
1 , u2,1

2 ) ∈ H2
Ω(∆D)×H1

Ω(∆D)×H1
Ω(∆D)×H0

Ω(∆D),

(u1,0
1 , u1,1

1 ) ∈ H4
Ω(∆D)×H3

Ω(∆D).

Additionally, assume that

(−∆D)2u1,0
1 −

α1

d1 − d2

∆Du
2,0
1 ∈ H1

Ω(∆D), (−∆D)2u1,1
1 −

α1

d1 − d2

∆Du
2,1
1 ∈ H0

Ω(∆D).

(4.3.7)
Then, the solutions u1

1, u2
1 and u2

2 satisfy

u1
1 ∈ C0([0, T ], H4

Ω(∆D)) ∩ C1([0, T ], H3
Ω(∆D)),

u2
1 ∈ C0([0, T ], H2

Ω(∆D)) ∩ C1([0, T ], H1
Ω(∆D)),

u2
2 ∈ C0([0, T ], H1

Ω(∆D)) ∩ C1([0, T ], H0
Ω(∆D)),

(−∆D)2u1
1 −

α1

d1 − d2

∆Du
2
1 ∈ C0([0, T ], H1

Ω(∆D)) ∩ C1([0, T ], H0
Ω(∆D)).
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Proof of Proposition 4.3.2. Classically, given the initial conditions

(u2,0
1 , u2,0

2 , u2,1
1 , u2,1

2 ) ∈ H2
Ω(∆D)×H1

Ω(∆D)×H1
Ω(∆D)×H0

Ω(∆D),

the solutions u2
1 and u2

2 satisfy

u2
1 ∈ C0([0, T ], H2

Ω(∆D)) ∩ C1([0, T ], H1
Ω(∆D)),

u2
2 ∈ C0([0, T ], H1

Ω(∆D)) ∩ C1([0, T ], H0
Ω(∆D)).

(4.3.8)

According to Lemma 4.2.2, given the initial condition

u1,0
1 , u1,1

1 ∈ H4
Ω(∆D)×H3

Ω(∆D),

the solution u1
1 satisfies

u1
1 ∈ C0([0, T ], H4

Ω(∆D)) ∩ C1([0, T ], H3
Ω(∆D)). (4.3.9)

Let us first do some reformulation for the system. Define the transform S0 by

S0

 u1
1

u2
1

u2
2

 =

 v1
1

v2
1

v2
2

 , (4.3.10)

where 
v1

1 = D3
t u

1
1,

v2
1 = Dtu

2
1,

v2
2 = u2

2.
(4.3.11)

We need to invert the previous relations by expressing u1
1, u

2
1, u

2
2 in terms of

v1
1, v

2
1, v

2
2. Firstly, for the term u2

2 = v2
2, there is nothing to do. Then, we look

at the term u2
1. We need to “invert" in some sense the operator Dt. We use the

second equation of System (4.3.6). We apply Dt on the second equation of System
(4.3.11), and we obtain

Dtv
2
1 = D2

t u
2
1

= u2
2 − d2∆u2

1

= v2
2 − d2∆u2

1.

Hence, we obtain that

u2
1 =

(−∆D)−1

d2

(Dtv
2
1 − v2

2). (4.3.12)

For the last term u1
1, we apply Dt on the first equation of System (4.3.11), then

we use the first equation of System (4.3.6), the second equation of System (4.3.6)
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and the last equation of System (4.3.11) to obtain

Dtv
1
1 = D2

t (D
2
t u

1
1)

= α1D
2
t u

2
1 − d1∆D2

t u
1
1

= α1(u2
2 − d2∆u2

1)− d1∆D(α1u
2
1 − d1∆u1

1)

= (−d1∆)2u1
1 − α1(d1 + d2)∆u2

1 + α1v
2
2.

Therefore, from the above computations, (4.3.11), and (4.3.12), an inverse trans-
form is the following:

u1
1 = (−∆D)−2

d2
1

(Dtv
1
1 + α1

d1+d2

d2
Dtv

2
1 + α1

d1

d2
v2

2),

u2
1 = (−∆D)−1

d2
(Dtv

2
1 − v2

2),

u2
2 = v2

2.

(4.3.13)

From the regularity results given in (4.3.8), (4.3.9) and the relations (4.3.13), we
obtain that

v1
1 ∈ C0([0, T ];H1

Ω(∆D)) ∩ C1([0, T ];H0
Ω(∆D)),

v2
j ∈ C0([0, T ];H1

Ω(∆D)) ∩ C1([0, T ];H0
Ω(∆D)), j = 1, 2.

(4.3.14)

Moreover, from (4.3.6) and (4.3.13), (v1
1, v

2
1, v

2
2) satisfies the following system:

�1v
1
1 + α1D

2
t v

2
1 = 0 in (0, T )× Ω,

�2v
2
1 +Dtv

2
2 = 0 in (0, T )× Ω,

�2v
2
2 −

a1(−∆D)−1

d2
(Dtv

2
1 − v2

2)− a2v
2
2 = f1ω in (0, T )× Ω,

v1
1 = 0, v2

j = 0 on (0, T )× ∂Ω, j = 1, 2,
(4.3.15)

with appropriate initial conditions. Using the identity

−D2
t =

1

d2 − d1

(d2�1 − d1�2) , (4.3.16)

we obtain that
D2
t v

2
1 = − 1

d2 − d1

(d2�1 − d1�2)v2
1. (4.3.17)

Using (4.3.17) in the first equation of (4.3.15), we also deduce that

�1

(
v1

1 −
α1d2

d2 − d1

v2
1

)
− α1d1

d2 − d1

Dtv
2
2 = 0. (4.3.18)

Now, let us define

y = Dtv
1
1 −

α1d2

d2 − d1

Dtv
2
1. (4.3.19)
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Then, by (4.3.19) and (4.3.18), we obtain that

�1y −
α1d1

d2 − d1

D2
t v

2
2 = 0. (4.3.20)

We also remark that by using (4.3.16),

−D2
t v

2
2 =

1

d2 − d1

(d2�1 − d1�2)v2
2. (4.3.21)

Using the last equation of (4.3.15) together with (4.3.20) and (4.3.21), we deduce
that

�1

(
y +

α1d1d2

(d2 − d1)2
v2

2

)
=

α1d
2
1

(d2 − d1)2
f+

α1a1d
2
1(−∆D)−1

d2(d2 − d1)2
(Dtv

2
1−v2

2)+
α1a2d

2
1

(d2 − d1)2
v2

2.

(4.3.22)
Let us now express y with respect to the original variables u1

1, u
2
1, u

2
2. From (4.3.19),

(4.3.11) and the first equation of (4.3.6), we obtain that

y = Dtv
1
1 −

α1d2

d2 − d1

Dtv
2
1

= D4
t u

1
1 −

α1d2

d2 − d1

D2
t u

2
1

= D2
t

(
D2
t u

1
1 −

α1d2

d2 − d1

u2
1

)
= D2

t

(
−d1∆u1

1 + α1u
2
1 −

α1d2

d2 − d1

u2
1

)
= D2

t

(
−d1∆u1

1 −
α1d1

d2 − d1

u2
1

)
.

(4.3.23)

Combining with the second equation of (4.3.6), we obtain

y = (−d1∆)2u1
1 −

α1d
2
1

d1 − d2

∆u2
1 +

α1d1

d1 − d2

u2
2.

Hence, we obtain

y +
α1d2d1

(d1 − d2)2
u2

2 = (−d1∆)2u1
1 −

α1d
2
1

d1 − d2

∆u2
1 +

α1d
2
1

(d2 − d1)2
u2

2.

Now, we define

ỹ = y +
α1d2d1

(d1 − d2)2
u2

2.
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Then, ỹ satisfies

�1ỹ =
α1d

2
1

(d2 − d1)2
f +

α1a1d
2
1(−∆D)−1

d2(d2 − d1)2
(Dtv

2
1 − v2

2) +
α1a2d

2
1

(d2 − d1)2
v2

2. (4.3.24)

The initial condition associated with ỹ is given by

ỹ|t=0 =

(
(−d1∆)2u1

1 −
α1d

2
1

d1 − d2

∆u2
1 +

α1d
2
1

(d2 − d1)2
u2

2

)
|t=0

= (−d1∆)2u1,0
1 −

α1d
2
1

d1 − d2

∆u2,0
1 +

α1d
2
1

(d2 − d1)2
u2,0

2

= d2
1

(
(−∆)2u1,0

1 −
α1

d1 − d2

∆u2,0
1

)
+

α1d
2
1

(d2 − d1)2
u2,0

2

∂tỹ|t=0 =

(
(−d1∆)2∂tu

1
1 −

α1d
2
1

d1 − d2

∆∂tu
2
1 +

α1d
2
1

(d2 − d1)2
∂tu

2
2

)
|t=0

= (−d1∆)2u1,1
1 −

α1d
2
1

d1 − d2

∆u2,1
1 +

α1d
2
1

(d2 − d1)2
u2,1

2

= d2
1

(
(−∆)2u1,1

1 −
α1

d1 − d2

∆u2,1
1

)
+

α1d
2
1

(d2 − d1)2
u2,1

2 .

Hence, from our Hypothesis (4.3.7) together with (4.3.8) and (4.3.9), we deduce
that

ỹ|t=0 ∈ H1
Ω(∆D), ∂tỹ|t=0 ∈ H0

Ω(∆D). (4.3.25)

By (4.3.24) and (4.3.14), ỹ satisfies a wave equation with a source term in the
space L1((0, T ), H0

Ω(∆D)) and initial condition in H1
Ω(∆D)×H1

Ω(∆D) by (4.3.25).
We deduce that

ỹ ∈ C0([0, T ];H1
Ω(∆D)) ∩ C1([0, T ];H0

Ω(∆D)).

Hence, from (4.3.24) and (4.3.23), we deduce that

(−∆)2u1
1 −

α1

d1 − d2

∆u2
1 +

α1

(d2 − d1)2
u2

2 ∈ C0([0, T ];H1
Ω(∆D)) ∩ C1([0, T ];H0

Ω(∆D)).

Taking into account the last line of (4.3.8), this implies that

(−∆)2u1
1 −

α1

d1 − d2

∆u2
1 ∈ C0([0, T ], H1

Ω(∆D)) ∩ C1([0, T ], H0
Ω(∆D)).
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Remark 4.3.3. Let us define the transform S associated with the system (4.3.6)
and (4.3.26) by

S

 u1
1

u2
1

u2
2

 =

 v1
1

v2
1

v2
2

 ,

where

S =

 (−d1∆D)2 − α1d2
1

d1−d2
∆D

α1d2
1

(d2−d1)2

0 Dt 0
0 0 1

 ,

and its “inverse”

S−1 =


(−∆D)−2

d2
1

−α1(−∆D)−2

d2(d1−d2)
Dt

α1(d1−2d2)(−∆D)−2

d2(d1−d2)2 )

0 (−∆D)−1

d2
Dt − (−∆D)−1

d2

0 0 1

 .

The previous computations show that we have a bijection between the solutions of

(4.3.6) and (4.3.26). Notably, if U =

 u1
1

u2
1

u2
2

 and V =

 v1
1

v2
1

v2
2

, then S ◦S−1V =

V and S−1 ◦ SU = U .
Notably, (4.3.6) can be rewritten as

(∂2
t −D∆ + A)(S−1 ◦ SU) = b̂f.

Therefore, since S(U) = V we are able to rewrite the system (4.3.26) as follows:

(∂2
t − SDS−1∆ + SAS−1)V = S b̂f,

where

D =

 d1 0 0
0 d2 0
0 0 d2

 , A =

 0 α1 0
0 0 1
0 −a1 −a2

 , S b̂f =


αsd2

1

(d1−d2)2f

0
...
0
f

 .

Moreover, we could notice that both S and S−1 only involve Dt and (−∆D)k, k ∈ Z.
This abstract point of view will be useful in the proof of the general case given in
Section 4.4.

Now, we consider the exact controllability of System (4.3.6) in the space H1
1 ×

H0
0, according to Proposition 4.3.2.
We have the following result:
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Theorem 4.3.4. Given T > 0, suppose that:

1. (ω, T, pdi) satisfies GCC, i = 1, 2.

2. Ω has no infinite order of tangential contact with the boundary.

Then System (4.3.6) is exactly controllable in H1
1 ×H0

0.

Recall that here the state space H1
1 ×H0

0 is given by

H1
1 = {(u, v1, v2) ∈ H4

Ω(∆D)×H2
Ω(∆D)×H1

Ω(∆D),

(−d1∆)2u− α1d
2
1

d1 − d2

∆v1 ∈ H1
Ω(∆D)},

H0
0 = {(u, v1, v2) ∈ H3

Ω(∆D)×H1
Ω(∆D)×H0

Ω(∆D),

(−d1∆)2u− α1d
2
1

d1 − d2

∆v1 ∈ H0
Ω(∆D)}.

Proof of Theorem 4.3.4.
By the computations of Proposition 4.3.2, proving Theorem 4.3.4 is equivalent

to proving the exact controllability of the following system:

�1v
1
1 −

α1a1d2
1(−∆D)−1

d2(d2−d1)2 (Dtv
2
1 − v2

2)− α1a2d2
1

(d2−d1)2v
2
2 =

α1d2
1

(d2−d1)2f1ω in (0, T )× Ω,

�2v
2
1 +Dtv

2
2 = 0 in (0, T )× Ω,

�2v
2
2 −

a1(−∆D)−1

d2
(Dtv

2
1 − v2

2)− a2v
2
2 = f1ω in (0, T )× Ω,

v1
1 = 0 on (0, T )× ∂Ω,
v2

1 = v2
2 = 0 on (0, T )× ∂Ω,

(4.3.26)
with initial conditions

(v1
1, v

2
1, v

2
2)|t=0 ∈ (H1

0 (Ω))3 = L 3
1 ,

(∂tv
1
1, ∂tv

2
1, ∂tv

2
2)|t=0 ∈ (L2(Ω))3 = L 3

0 ,

in the state space L 3
1 ×L 3

0 . Recall that we defined L k
s = (Hs

Ω(∆D))k in (4.1.5).
According to the Hilbert Uniqueness Method of J.-L. Lions [38], the exact con-
trollability of System (4.3.26) is equivalent to proving the following observability
inequality: there exists C > 0 such that for any solution of the adjoint system:

�1w
1
1 = 0 in (0, T )× Ω,

�2w
2
1 −

α1a1d2
1(−∆D)−1

d2(d2−d1)2 Dtw
1
1 −

a1(−∆D)−1

d2
Dtw

2
2 = 0 in (0, T )× Ω,

�2w
2
2 +Dtw

2
1 − a2w

2
2 +

α1a1d2
1(−∆D)−1

d2(d2−d1)2 w1
1

− α1a2d2
1

(d2−d1)2w
1
1 + a1(−∆D)−1

d2
w2

2 = 0 in (0, T )× Ω,

w1
1 = 0 on (0, T )× ∂Ω,

w2
1 = w2

2 = 0 on (0, T )× ∂Ω,
(4.3.27)
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with initial conditions

(w1
1, w

2
1, w

2
2)|t=0 ∈ L 3

0 , (4.3.28)
(∂tw

1
1, ∂tw

2
1, ∂tw

2
2)|t=0 ∈ L 3

−1, (4.3.29)

we have the following observability inequality:

C

∫ T

0

∫
ω

∣∣∣∣ α1d
2
1

(d2 − d1)2
w1

1 + w2
2

∣∣∣∣2 dxdt ≥ ||W (0)||2L 3
0 ×L 3

−1
, (4.3.30)

where W = (w1
1, w

2
1, w

2
2).

Remark 4.3.5. As we showed in Remark 4.3.3, we are able to rewrite the system
(4.3.27) as follows:

(∂2
t − (S ′)−1

DS ′∆ + (S ′)−1
A∗S ′)W = 0.

However, we should pay attention to this S ′, which is defined as the invertible
transform between two adjoint systems. S ′ could be seen as the “adjoint” operator
of S. To be more specific, we write the original adjoint system as follows:

�1z
1
1 = 0 in (0, T )× Ω,

�2z
2
1 + α1z

1
1 − a1z

2
2 = 0 in (0, T )× Ω,

�2z
2
2 + z2

1 − a2z
2
2 = 0 in (0, T )× Ω,

z1
1 = 0, z2

j = 0 on (0, T )× ∂Ω, j = 1, 2.

(4.3.31)

The transform S ′ associated with the system (4.3.27) and (4.3.31) is defined by

S ′
 w1

1

w2
1

w2
2

 =

 z1
1

z2
1

z2
2

 ,

where

S ′ =

 (−d1∆D)2 0 0

− α1d2
1

d1−d2
∆D +

a1α1d2
1(−∆D)−1

d2(d1−d2)2 Dt
a1(−∆D)−1

d2

α1d2
1

(d2−d1)2 0 1

 , (4.3.32)

and its “inverse” by

(S ′)−1
=

 (−d1∆D)−2 0 0

−α1(−∆D)−2

d2(d1−d2)
Dt (−d2∆D)−1Dt 0

−α1(−∆D)−2

(d2−d1)2 0 1

 .

Moreover, we could notice that both S ′ and (S ′)−1 only involve Dt and (−∆D)k, k ∈
Z. As already written, this point of view will be useful in the proof of the general
case given in Section 4.4.

We divide the proof of the observability inequality (4.3.30) into two steps.

120



CHAPTER 4. CONTROL OF COUPLED WAVE SYSTEMS

Step 1: establish a relaxed observability inequality.

Firstly, we establish the following relaxed observability inequality for the adjoint
System (4.3.27).

Proposition 4.3.6. For solutions of System (4.3.27), there exists a constant C >
0 such that for any solution of (4.3.27) with initial conditions verifying (4.3.28),
we have

||W (0)||2L 3
0 ×L 3

−1
≤ C

(∫ T

0

∫
ω

∣∣∣∣ α1d
2
1

(d2 − d1)2
w1

1 + w2
2

∣∣∣∣2 dxdt+ ||W (0)||2L 3
−1×L 3

−2

)
.

(4.3.33)

Proof of Proposition 4.3.6. We argue by contradiction. Suppose that the
observability inequality (4.3.33) is not satisfied. Thus, there exists a sequence
(W k)k∈N of solutions of System (4.3.27) such that

||W k(0)||2L 3
0 ×L 3

−1
= 1, (4.3.34)∫ T

0

∫
ω

∣∣∣∣ α1d
2
1

(d2 − d1)2
w1,k

1 + w2,k
2

∣∣∣∣2 dxdt→ 0 as k →∞, (4.3.35)

||W k(0)||2L 3
−1×L 3

−2
→ 0 as k →∞. (4.3.36)

By the continuity of the solution with respect to the initial data of System (4.3.27),
we know that the sequence (W k)k∈N is bounded in (L2((0, T )×Ω))3 and moreover,
W k ⇀ 0 in (L2((0, T )× Ω))3. W k satisfies the following system:

�1w
1,k
1 = o(1)H−1 in (0, T )× Ω, k →∞

�2w
2,k
1 = o(1)H−1 in (0, T )× Ω, k →∞

�2w
2,k
2 +Dtw

2,k
1 = o(1)H−1 in (0, T )× Ω, k →∞,

(4.3.37)

where the first equation is decoupled from the two last equations.

Remark 4.3.7. We say fk = o(1)H−1 if limk→∞ ||fk||H−1((0,T )×Ω) = 0. Let us
explain briefly how to obtain (4.3.37). We take the term (−∆D)−1

d2
Dtw

2,k
2 for in-

stance. Other terms can be treated similarly. For (−∆D)−1

d2
Dtw

2,k
2 , we know that

(−∆D)−1

d2
Dtw

2,k
2 ∈ L2((0, T );H2

Ω) ∩H−1((0, T );H1
Ω) is a bounded sequence and con-

verges weakly to 0. Since the injection from L2((0, T );H2
Ω) ∩ H−1((0, T );H1

Ω) to
H−1((0, T )× Ω) is compact, we obtain that (−∆D)−1

d2
Dtw

2,k
2 = o(1)H−1.

Hence, we obtain two microlocal defect measures µ
1
and µ

2
associated with

(w1,k
1 )k∈N and (W 2,k)k∈N = (w2,k

1 , w2,k
2 )k∈N respectively. From the definition in
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Proposition 4.2.6, we know that

∀A ∈ A, 〈µ
1
, σ(A)〉 = lim

k→∞
(Aw1,k

1 , w1,k
1 )L2 ,

〈µ
2
(i, j), σ(A)〉 = lim

k→∞
(Aw2,k

i , w2,k
j )L2 , 1 ≤ i, j ≤ 2.

(4.3.38)

Here µ
2

= (µ
2
(i, j))1≤i,j≤2 is the matrix measure associated with the sequence

(W 2,k)k∈N = (w2,k
1 , w2,k

2 )k∈N and wj,ki is the extension by 0 across the boundary of
Ω (1 ≤ i, j ≤ 2). Moreover, since the two characteristic manifolds Char(pd1) and
Char(pd2) are compact and disjoint, µ

1
and µ

2
are mutually singular in (0, T ) ×

Ω, from the first point of Proposition 4.2.7. Therefore, we obtain the following
property:

Lemma 4.3.8. For A ∈ A with compact support in (0, T )×Ω and for 1 ≤ i ≤ 2,
we have

lim sup
k→∞

|(Aw1,k
1 , w2,k

i )L2(R×Ω)| = 0. (4.3.39)

Proof. We follow the same strategy as for the proof of [44, Lemma 4.10]. Since
Char(pd1) and Char(pd2) are disjoint, we choose a cut-off function β ∈ C∞(T ∗R×
Rd) homogeneous of degree 0 for |(τ, ξ)| ≥ 1, with compact support in (0, T ) × Ω
such that

β|Char(pd1
) = 1, β|Char(pd2

) = 0, and 0 ≤ β ≤ 1.

Since A ∈ A with compact support in (0, T ) × Ω, for some ϕ ∈ C∞0 ((0, T ) × ω),
we have that A = ϕAϕ. We introduce ϕ̃ ∈ C∞0 ((0, T )× ω) such that ϕ̃|supp(ϕ) = 1

i.e, ϕ̃ϕ = ϕ. Now, let us consider (Aw1,k
1 , w2,k

2 )L2 . First, we have that

(Aw1,k
1 , w2,k

2 )L2 = (ϕAϕw1,k
1 , w2,k

2 )L2

= (ϕAϕw1,k
1 , ϕ̃w2,k

2 )L2

= ((1−Op(β))ϕAϕw1,k
1 , ϕ̃w2,k

2 )L2 + (Op(β)ϕAϕw1,k
1 , ϕ̃w2,k

2 )L2 .

For the first term ((1−Op(β))ϕAϕw1,k
1 , ϕ̃w2,k

2 )L2 , by the Cauchy-Schwarz inequal-
ity, we obtain that

|((1−Op(β))ϕAϕw1,k
1 , ϕ̃w2,k

2 )L2| ≤ ||(1−Op(β))ϕAϕw1,k
1 ||L2||ϕ̃w2,k

2 ||L2 . (4.3.40)

As we know that {w2,k
2 } is bounded in L2

loc(R
+ × Rd), there exists a constant C

such that
||ϕ̃w2,k

2 ||2L2 = (ϕ̃w2,k
2 , ϕ̃w2,k

2 )L2 ≤ C. (4.3.41)
From the definition of the measure µ

1
, we obtain

lim
k→∞
||(1−Op(β))ϕAϕw1,k

1 ||2L2 = lim
k→∞

((1−Op(β))ϕAϕw1,k
1 , (1−Op(β))ϕAϕw1,k

1 )L2

= 〈µ
1
, (1− β)2ϕ4|σ(A)|2〉.

(4.3.42)
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From Proposition 4.2.7, we have that supp (µ
1
) ⊂ Char(pd1). In addition, by the

choice of β, we know that 1 − β ≡ 0 on supp (µ
1
), which implies that 〈µ

1
, (1 −

β)2ϕ4|σ(A)|2〉 = 0. Combining (4.3.40), (4.3.41) and (4.3.42), we obtain

lim sup
k→∞

|((1−Op(β))ϕAϕw1,k
1 , ϕ̃w2,k

2 )L2| = 0. (4.3.43)

The other term is dealt with similarly. One can refer to [44, Lemma 4.10] for more
details.

Let us go back to the proof of Proposition 4.3.6. We know that∫ T

0

∫
ω

∣∣∣∣ d2
1

(d2 − d1)2
w1,k

1 + w2,k
2

∣∣∣∣2 dxdt→ 0 as k →∞.

For χ ∈ C∞0 (ω × (0, T )), by expending the above expression,

2(
d2

1

(d2 − d1)2
χw1,k

1 , χw2,k
2 )L2(R×Ω)

+(
d2

1

(d2 − d1)2
χw1,k

1 ,
d2

1

(d2 − d1)2
χw1,k

1 )L2(R×Ω) + (χw2,k
2 , χw2,k

2 )L2(R×Ω) → 0, as k →∞.

By Lemma 4.3.8, we know that

lim sup
k→∞

∣∣∣∣( d2
1

(d2 − d1)2
χw1,k

1 , χw2,k
2 )L2(R×Ω)

∣∣∣∣ = 0.

As a consequence, since we know that∣∣∣∣ d2
1

(d2 − d1)2
w1,k

1 + w2,k
2

∣∣∣∣2 > 0,

we deduce that

(
d2

1

(d2 − d1)2
χw1,k

1 ,
d2

1

(d2 − d1)2
χw1,k

1 )L2(R×Ω) → 0,

(χw2,k
2 , χw2,k

2 )L2(R×Ω) → 0, as k →∞.

Thus, using (4.3.38), we know that (here µ2 = (µ2(i, j))1≤i,j≤2 is a matrix measure)

µ
1
|(0,T )×ω = 0, and µ

2
(2, 2)|(0,T )×ω = 0.

For µ
1
, since µ

1
is invariant along the general bicharacteristics of pd1 , combining

with GCC, we obtain as usual that µ
1
≡ 0. For µ

2
, we consider another definition
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of the microlocal defect measure. From the definition in Proposition 4.2.8, we
know that there exists a measure µ2 such that

∀A ∈ A, 〈µ2, κ(σ(A))〉 = lim
k→∞

(AW 2,k,W 2,k)L2 . (4.3.44)

Since µ
2
|Char(pd2 ) = µ2 µ2-almost surely by Remark 4.2.13, we obtain that µ2(2, 2)|(0,T )×ω

= 0. In the following part, we aim to prove that µ2 = 0. The basic idea is to use
Lemma 4.2.10. Here we recall this lemma under our setting of this adjoint system.

Lemma 4.3.9. Assume that µ2 is the corresponding microlocal defect measure
defined by (4.3.44) for the sequence (w2,k

1 , w2,k
2 )k∈N which satisfies the following

system (according to (4.3.27)):{
�2w

2,k
1 = o(1)H−1 in (0, T )× Ω, k →∞

�2w
2,k
2 +Dtw

2,k
1 = o(1)H−1 in (0, T )× Ω, k →∞.

(4.3.45)

If we denote the general bicharacteristic by s 7→ γ(s), then along γ(s) there exists
a continuous function s 7→M(s) such that M satisfies the differential equation:

d

ds
(M(s)) = iE(τ)M(s),M(0) = Id,

and µ2 is invariant along the flow associated with M , which means that

d

ds
(M∗µ2M) = 0.

Here we denote by E(τ) the matrix
(

0 τ
0 0

)
.

Remark 4.3.10. For the differential equation which M satisfies and the explicit
form of the matrix E which we use here, one can refer to [15, Section 3.2] for
more details.

Remark 4.3.11. In our setting, we can compute explicitly the form of the matrix

M(s) =

(
1 iτs
0 1

)
and τ is a constant with respect to s along the generalized bicharacteristic by the
explicit form of Char(P ) given in (4.2.13).

Now we use this Lemma 4.3.9 to prove that µ2 = 0. First, we would like to show
that supp(µ2) ∩ π−1((0, T ) × ω) = ∅. Let us fix some point ρ0 ∈ π−1((0, T ) × ω).
Then, there exists a unique bicharacteristic s 7→ γ0(s) such that γ0(0) = ρ0.
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Moreover, there exists ε > 0, which is sufficiently small, such that γ0((−2ε, 2ε)) ⊂
π−1((0, T )×ω). Since µ2 is invariant along the flow associated with M , we obtain
µ2(0) = M(ε)∗µ2(ε)M(ε). Let

e1 =

(
1
0

)
and e2 =

(
0
1

)
.

By a straightforward computation using the special form of M , we have

M(ε)e2 = iτεM(ε)e1 + e2.

Hence, we obtain

µ2(0)e2 = M(ε)∗µ2(ε)M(ε)e2

= M(ε)∗µ2(ε)(iτεM(ε)e1 + e2)

= iτεµ2(0)e1 +M(ε)∗µ2(ε)e2.

(4.3.46)

We know that µ2(2, 2) ≡ 0 on (0, T ) × ω, which means that wk2,2 → 0 strongly in
L2((0, T )×ω). Hence, by (4.3.38), we also have that µ2(ε)e2 = 0. Hence, we obtain
µ2(0)e2 = −iτεµ(0)e1. But by the choice of ρ0, we know that µ2(0)e2 also vanishes,

which gives that −iτεµ2(0)e1 = 0, i.e. µ2(0)e1 = 0. Hence, µ2(0) =

(
0 0
0 0

)
.

Since ρ0 is arbitrary, we deduce that supp(µ2) ∩ π−1((0, T )× ω) = ∅.
Now, let us go back to prove that µ2 = 0. For any point ρ1 ∈ supp(µ2),

there exists a unique bicharacteristic s 7→ γ1(s) such that γ1(0) = ρ1. Using
the GCC (see Definition 4.1.1), we know that there exists a time t0 such that
γ1(t0) ∈ π−1((0, T ) × ω). Since µ2 is invariant along the flow associated with M ,
we obtain

µ2(0) = M(t0)∗µ2(t0)M(t0). (4.3.47)

We already know that supp(µ2) ∩ π−1((0, T ) × ω) = ∅, which means that
µ2(t0) = 0. By (4.3.47), we deduce that µ2(0) = 0. Due to the arbitrary choice
of ρ1, we obtain that supp(µ2) = ∅, i.e. µ2 ≡ 0, which leads to a contradiction
with (4.3.34) (See [44, Section 4.2] for more details). We conclude that the relaxed
observability inequality (4.3.33) holds for all the solutions of System (4.3.27).

Step 2: analysis of the invisible solutions

With the relaxed observability inequality (4.3.33) in Proposition 4.3.6, we are now
able to handle the low-frequencies and conclude the proof of the observability
(4.3.30). The main point here is a unique continuation result for solutions of
the elliptic problem associated with System (4.3.27). The idea of reducing the
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observability for the low frequencies to an elliptic unique continuation result and
associated technology are due to [10]. First, let us write for the sake of simplicity
the initial conditions as

W = (w1,0
1 , w2,0

1 , w2,0
2 , w1,1

1 , w2,1
1 , w2,1

2 )t (∈ L 3
0 ×L 3

−1), (4.3.48)

and define for any T > 0 the set of invisible solutions (see [10]) from (0, T )×ω

N3(T ) = {W ∈ L 3
0 ×L 3

−1 such that the associated solution of System (4.3.27)

satisfies
α1d

2
1

(d2 − d1)2
w1

1(x, t) + w2
2(x, t) = 0,∀(x, t) ∈ (0, T )× ω}.

We have the following key lemma, which is proved at the end of this section.

Lemma 4.3.12. N3(T ) = {0}.

Assume for the moment that Lemma 4.3.12 holds. As for the proof of the
observability inequality (4.3.30), we proceed by contradiction. If the observability
inequality (4.3.30) were false, we could find a sequence (W k)k∈N of solutions to
System (4.3.27) which satisfy

||W k(0)||2L 3
0 ×L 3

−1
= 1, (4.3.49)∫ T

0

∫
ω

∣∣∣∣ α1d
2
1

(d2 − d1)2
w1,k

1 + w2,k
2

∣∣∣∣2 dxdt→ 0 as k →∞. (4.3.50)

By the well-posedness, we know that (W k)k∈N is bounded in L2((0, T )×Ω). Hence,
there exists a subsequence (also denoted by W k) weakly converging in L2((0, T )×
Ω), towards W ∈ L2((0, T ) × Ω), which is also a solution of System (4.3.27)
(since what we consider is a linear system) and satisfies that α1d2

1

(d2−d1)2w
1
1 + w2

2 = 0

in (0, T ) × ω. Thus, we know that W (0) ∈ N (T ) = {0}, which implies that
W (0) = 0. Since the embedding L2 × H−1

Ω (∆D) ↪→ H−1
Ω (∆D) × H−2

Ω (∆D) is
compact, we obtain that ||W k(0)||2

L 3
−1×L 3

−2
→ ||W (0)||2

L 3
−1×L 3

−2
. From the relaxed

observability inequality (4.3.33), we know that

1 ≤ C||W (0)||2L 3
−1×L 3

−2
,

which contradicts to the fact that W (0) = 0. Then we can conclude the observ-
ability inequality (4.3.30).

It only remains to prove Lemma 4.3.12.

Proof of Lemma 4.3.12. According to the relaxed observability inequality (4.3.33),
for W ∈ N (T ), we obtain that

||W (0)||2L 3
0 ×L 3

−1
≤ C||W (0)||2L 3

−1×L 3
−2
. (4.3.51)
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We know that N (T ) is a closed subspace of L 3
0 ×L 3

−1. By the compact embedding
L2(Ω)×H−1(Ω) ↪→ H−1(Ω)×H−2(Ω), we know that N (T ) has a finite dimension.
Then, we define the operator A as


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−d1∆D 0 0 0 0 0

0 −d2∆D 0 −
α1a1d

2
1(−∆D)−1

d2(d2−d1)2
0 − a1(−∆D)−1

d2

α1a1d
2
1(−∆D)−1

d2(d2−d1)2
−

α1a2d
2
1

(d2−d1)2
0 −d2∆D − a2 +

a1(−∆D)−1

d2
0 1 0


.

We know that the solution (w1
1, w

2
1, w

2
2, Dtw

1
1, Dtw

2
1, Dtw

2
2)t can be written as

w1
1

w2
1

w2
2

Dtw
1
1

Dtw
2
1

Dtw
2
2

 = e−tA W ,

where W is defined in (4.3.48). Let δ ∈ (0, T ), we know that (4.3.51) is still true
for W ∈ N (T−δ). Taking W ∈ N (T ), for ε ∈]0, δ[, we have e−εA W ∈ N (T−δ).
For α large enough, as ε→ 0+,

(α+A )−1 1

ε
(Id− e−εA )W → (α+A )−1A W as ε→ 0+Â in L 3

0 ×L 3
−1. (4.3.52)

Remind that

D(A ) = {U ∈ L 3
0 ×L 3

−1|
d

dt
(e−tA )t=0+ converges}. (4.3.53)

Since ||(α + A )−1 · ||L 3
0 ×L 3

−1
is a norm, (4.3.52) means that (Id − e−εA )ε>0 is

convergent for this norm. Since all norms are equivalent on the finite-dimensional
linear subspace N (T ), we notably deduce that (Id− e−εA )W converges in L 3

0 ×
L 3
−1, so that W ∈ D(A ) by (4.3.53). We deduce that N(T − δ) ⊂ D(A ). Since

this equality is true for any δ ∈ (0, T ), we deduce that N(T ) ⊂ D(A ). Hence, for
W ∈ N(T ), we have

d

dt
(e−tA (W ))t=0+ = −A W .

Since N (T ) is clearly stable by differentiation with respect to t, we deduce that
A W ∈ N(T ). This implies that A N (T ) ⊂ N (T ) ⊂ L 3

0 ×L 3
−1. Since N (T )

is a finite dimensional closed subspace of D(A ), and stable by the action of the
operator A , it contains an eigenfunction of A . Let us consider such an eigenfunc-
tion (φ0

1, φ
0
2, φ

0
3, φ

1
1, φ

1
2, φ

1
3) ∈ N (T ), associated to an eigenvalue ν ∈ C, so that we
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have

φ1
1 = νφ0

1,
φ1

2 = νφ0
2,

φ1
3 = νφ0

3,
−d1∆Dφ

0
1 = νφ1

1,

−d2∆Dφ
0
2 −

α1a1d2
1(−∆D)−1

d2(d2−d1)2 φ1
1 −

a1(−∆D)−1

d2
φ1

3 = νφ1
2,

−d2∆Dφ
0
3 − a2φ

0
3 + a1(−∆D)−1

d2
φ0

3 +
α1a1d2

1(−∆D)−1

d2(d2−d1)2 φ0
1 −

α1a2d2
1

(d2−d1)2φ
0
1 + φ1

2 = νφ1
3,(

α1d2
1

(d1−d2)2φ
0
1 + φ0

3

)
|ω = 0.

(4.3.54)
Let us define a change of variables:

ϕ1 = d2
1∆2

Dφ
0
1,

ϕ2 = νφ0
2 +

α1d2
1

d2−d1
∆Dφ

0
1 + a1(−∆D)−1

d2
(

α1d2
1

(d1−d2)2φ
0
1 + φ0

3),

ϕ3 =
α1d2

1

(d1−d2)2φ
0
1 + φ0

3.

(4.3.55)

Remark 4.3.13. We could make a link between the transform S ′ and (4.3.55).
Formally, we are able to write ϕ1

ϕ2

ϕ3

 = S ′(ν,∆D)

 φ0
1

φ0
2

φ0
3

 . (4.3.56)

Here we use the notation S ′(ν,∆D) to denote the transform replacing formally Dt

by the eigenvalue ν (remind that S ′ involves only Dt and powers of ∆D).

Then, we obtain a new system
−d1∆Dϕ1 = ν2ϕ1,
−d2∆Dϕ2 + α1ϕ1 − a1ϕ3 = ν2ϕ2,
−d2∆Dϕ3 − a2ϕ3 + ϕ2 = ν2ϕ3,
ϕ3|ω = 0.

(4.3.57)

Using the last equation of (4.3.57), we have

ϕ2|ω =
(
ν2ϕ3 + d2∆Dϕ3 + a2ϕ3

)
|ω = 0.

Similarly, using the second equation of (4.3.57), we obtain ϕ1|ω = 0. Since ϕ =
(ϕ1, ϕ2, ϕ3) is the solution of the elliptic System (4.3.57) verifying ϕ|ω = 0, by
usual unique continuation for elliptic systems, we obtain that ϕ ≡ 0 on Ω.

Let us now go back to the eigenvector (φ0
1, φ

0
2, φ

0
3, φ

1
1, φ

1
2, φ

1
3). The first line of

(4.3.57) gives that α1d
2
1∆2

Dφ
0
1 = 0 on Ω. Since α1 6= 0 by (4.3.3) and φ0

1 = ∆φ0
1 = 0
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on ∂Ω, we deduce that φ0
1 = 0 on Ω. The first line of (4.3.54) also provides that

φ1
1 = 0 on Ω. Working on the second line of (4.3.57) and then on the last line of

(4.3.57), we obtain similarly that φ0
2 = φ1

2 = φ0
3 = φ1

3 = 0 on Ω, which concludes
the proof.

4.3.3 The case α̃2 6= 0

According to Lemma 4.2.2, given the initial condition

(ũ1,0
1 , ũ1,1

1 ) ∈ H3
Ω(∆D)×H2

Ω(∆D),

the solution ũ1
1 to the first line of (4.3.5) satisfies

ũ1
1 ∈ C0([0, T ], H3

Ω(∆D)) ∩ C1([0, T ], H2
Ω(∆D)).

For technical reasons, we would like to work in symmetric spaces. We introduce
a change of variables 

v1
1 = D2

t ũ
1
1 +

α̃2d2

d1 − d2

ũ2
2,

v2
1 = Dtũ

2
1,

v2
2 = ũ2

2.

with the inverse transform defined by
ũ1

1 = (−∆D)−1

d1
v1

1 −
α1(−∆D)−2

d1d2
v2

1 + (−∆D)−1

d1
(α1 − α2d1

d1−d2
)v2

2,

ũ2
1 = (−∆D)−1

d2
(Dtv

2
1 − v2

2),

ũ2
2 = v2

2.

The exact controllability of System (4.3.5) is equivalent to the exact controllability
in the state space L 3

1 ×L 3
0 of the system:

�1v
1
1 + (α1 − α2a1d1(−∆D)−1

d2(d1−d2)
)Dtv

2
1 − (a2α2d1

d1−d2
+ α2a1d1(−∆D)−1

d2(d1−d2)
)v2

2 = α2d1

d1−d2
f,

�2v
2
1 +Dtv

2
2 = 0,

�2v
2
2 −

a1(−∆D)−1

d2
Dtv

2
1 + (a1(−∆D)−1

d2
− a2)v2

2 = f,

v1
1|∂Ω = 0, v2

j |∂Ω = 0, j = 1, 2,
(v1

1, v
2
1, v

2
2, ∂tv

1
1, ∂tv

2
1, ∂tv

2
2)|t=0 ∈ L 3

1 ×L 3
0 .

(4.3.58)
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It is equivalent to proving the following observability inequality: ∃C > 0 such
that for any solutions of the adjoint system

�1w
1
1 = 0,

�2w
2
1 + (α1 − α2a1d1(−∆D)−1

d2(d1−d2)
)Dtw

1
1 −

a1(−∆D)−1

d2
Dtw

2
2 = 0,

�2w
2
2 +Dtw

2
1 + (a1(−∆D)−1

d2
− a2)w2

2 − (a2α2d1

d1−d2
+ α2a1d1(−∆D)−1

d2(d1−d2)
)w1

1 = 0,

w1
1|∂Ω = 0, w2

j |∂Ω = 0 j = 1, 2,

(w1
1, w

2
1, w

2
2)|t=0 = (w1,0

1 , w2,0
1 , w2,0

2 ) ∈ L 3
0 ,

(∂tw
1
1, ∂tw

2
1, ∂tw

2
2)|t=0 = (w1,1

1 , w2,1
1 , w2,1

2 ) ∈ L 3
−1.
(4.3.59)

we have the following observability inequality

C

∫ T

0

∫
ω

∣∣∣∣ α2d1

d1 − d2

w1
1 + w2

2

∣∣∣∣2 dxdt ≥ ||W (0)||2L 3
0 ×L 3

−1
. (4.3.60)

We follow the same procedure to prove the inequality (4.3.60) as we presented in
Subsection 4.3.2. The proof is totally similar for the high frequency part. For the
low frequency part, the same computations lead to consider a unique continuation
property of the form

−d1∆Dϕ1 = ν2ϕ1,
−d2∆Dϕ2 + α1ϕ1 − a1ϕ3 = ν2ϕ2,
−d2∆Dϕ3 + α2ϕ1 + ϕ2 − a2ϕ3 = ν2ϕ3,
ϕ3|ω = 0.

(4.3.61)

This system is very similar to (4.3.57). The main difference is that from the two
last lines of (4.3.61), we only obtain for the moment that

α2ϕ1 + ϕ2 = 0 on ω. (4.3.62)

Using (4.3.62) with the first line of (4.3.61), we deduce that

d1∆Dϕ2 = −d1α2∆Dϕ1 = ν2α2ϕ1 on ω. (4.3.63)

From (4.3.63) and the second line of (4.3.61), we deduce that(
d1α1 − α2d2ν

2
)
ϕ1 − ν2d1ϕ2 = 0 on ω. (4.3.64)

The unique solution of (4.3.62) and (4.3.64) is ϕ1 = ϕ2 = 0 on ω if

(α2)
(
−ν2d1

)
− 1

(
d1α1 − α2d2ν

2
)
6= 0,

i.e.
α2ν

2 (d1 − d2) + d1α1 6= 0.
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The first line of (4.3.61) implies that there exists λ ∈ σ(−∆D) such that ν2 = d1λ.
Hence, ϕ1 = ϕ2 = 0 on ω if

α2λ (d1 − d2) + α1 6= 0,

which is the case thanks to (4.3.3). Hence, we have ϕ1 = ϕ2 = ϕ3 = 0 on ω, and
we can then conclude exactly as in the previous case α̃2 = 0.

4.4 Proof of the sufficient part of Theorem 4.1.16

We organize this section a little bit differently from the previous section. We start
by a modal problem to introduce the compatibility condition in this setting. We
follow by a reformulation procedure of System (4.1.2). At last, we finish the proof
of our main Theorem 4.1.16.

4.4.1 The modal case

Let f ∈ L2((0, T ), L2(Ω)). For a fixed 1 ≤ s ≤ n2, we consider the following
system as a modal problem

�1u
1
1 +

∑s
j=1 αju

2
j = 0 in (0, T )× Ω,

�2u
2
1 + u2

2 = 0 in (0, T )× Ω,
...
�2u

2
n2−1 + u2

n2
= 0 in (0, T )× Ω,

�2u
2
n2
−
∑n2

j=1 an2+1−ju
2
j = f1ω in (0, T )× Ω,

u1
1 = 0, u2

j = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n2,

(u1
1, u

2
1, · · · , u2

n2
)|t=0 = (u1,0

1 , u2,0
1 , · · · , u2,0

n2
) in Ω,

(∂tu
1
1, ∂tu

2
1, · · · , ∂tu2

n2
)|t=0 = (u1,1

1 , u2,1
1 , · · · , u2,1

n2
) in Ω.

(4.4.1)
In this section, we aim to prove the exact controllability of System (4.4.1) with the
help of proper compatibility conditions. For this modal System (4.4.1), we have
the following well-posedness property:

Proposition 4.4.1. Assume that the initial conditions verify

(u1,0
1 , u2,0

1 , · · · , u2,0
n2

) ∈ Hn2+3−s
Ω (∆D)×Hn2

Ω (∆D)× · · · ×H1
Ω(∆D),

(u1,1
1 , u2,1

1 , · · · , u2,1
n2

) ∈ Hn2+2−s
Ω (∆D)×Hn2−1

Ω (∆D)× · · · ×H0
Ω(∆D).
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Additionally, let us define Ũ0 and Ũ1 by

Ũ0 = (−d1∆)n2−s+1u1,0
1 +

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lu2,0

j+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lu2,0

j+k+l,

(4.4.2)
and

Ũ1 = (−d1∆)n2−s+1u1,1
1 +

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lu2,1

j+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lu2,1

j+k+l.

(4.4.3)
Assume that Ũ0 ∈ H1

Ω(∆D) and Ũ1 ∈ H0
Ω(∆D). Then, the solution (u1

1, u
2
1, · · · , u2

n2
)

satisfies

u1
1 ∈ C0([0, T ], Hn2+3−s

Ω (∆)) ∩ C1([0, T ], Hn2+2−s
Ω (∆)),

u2
j ∈ C0([0, T ], Hn2+1−j

Ω (∆)) ∩ C1([0, T ], Hn2−j
Ω (∆)), 1 ≤ j ≤ n2.

(4.4.4)

Furthermore, we have(
(−d1∆)n2−s+1u1

1 +

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lu2

j+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lu2

j+k+l

)
∈ C0([0, T ], H1

Ω(∆D)) ∩ C1([0, T ], H0
Ω(∆D)).

(4.4.5)

Remark 4.4.2. Let n2 = 2, s = 1, α1 = 1, then (4.4.5) becomes the following
condition: (

(−d1∆)2u1
1 +

1∑
k=0

1−k∑
l=0

(
1− k
l

)
(−d1∆)k(−d2∆)1−k−lu2

1+l

+
1∑

k=0

1−k∑
l=0

d2d
k
1

(d1 − d2)k+1

(
1− k
l

)
(−d2∆)1−k−lu2

1+k+l

)
∈ C0([0, T ], H1

Ω(∆D)) ∩ C1([0, T ], H0
Ω(∆D)).
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Simplifying the formula, we obtain that

(
(−d1∆)2u1

1 +
d1

d1 − d2

(−d1∆)u2
1 +

d2
1

(d1 − d2)2
u2

2

)
∈ C0([0, T ], H1

Ω(∆D)) ∩ C1([0, T ], H0
Ω(∆D)).

This is just the compatibility condition in the previous section.

Proof. As we have shown in the proof of Proposition 4.3.2, it is classical to obtain
the regularity of the solutions given in (4.4.4), following Lemma 4.2.2. Now, we
focus on the proof of the compatibility conditions (4.4.5), so we restrict to the case
s < n2 according to Remark 4.1.10. We perform the similar reformulation for the
solutions of System (4.4.1):


v1

1 = Dn2+2−s
t u1

1,
v2

1 = Dn2−1
t u2

1,
...
v2
n2

= u2
n2
.

(4.4.6)

The transform above is “invertible”, and there are four different cases for the form
of the inverse, that is, n2 and n2 − s are both even or odd, n2 is even while n2 − s
is odd and the converse, that we do not detail here. We perform the same strategy
as we have already shown in the proof of the Proposition 4.3.2. Thus, we obtain
a system for v1

1, v
2
1, · · · , v2

n2
given by



�1v
1
1 +

∑s
j=1 αjD

n2+2−s
t u2

j = 0 in (0, T )× Ω,

�2v
2
1 +Dtv

2
2 = 0 in (0, T )× Ω,

...
�2v

2
n2−1 +Dtv

2
n2

= 0 in (0, T )× Ω,
�2v

2
n2
−
∑n2

j=1 an2+1−ju
2
j = f1ω in (0, T )× Ω,

v1
1 = 0, v2

j = 0 on (0, T )× ∂Ω, 1 ≤ j ≤ n2,

(4.4.7)

with initial conditions

(v1
1, v

2
1, · · · , v2

n2
)|t=0 = (v1,0

1 , v2,0
1 , · · · , v2,0

n2
),

(∂tv
1
1, ∂tv

2
1, · · · , ∂tv2

n2
)|t=0 = (v1,1

1 , v2,1
1 , · · · , v2,1

n2
).

(4.4.8)
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We focus on the first equation. Let y1
0 = v1

1 + αsd2

d1−d2
v2
s . Then, we obtain

�1y
1
0 = �1v

1
1 +

αsd2

d1 − d2

�1v
2
s

= −
s∑
j=1

αjD
n2−s+2
t u2

j +
αsd2

d1 − d2

�2v
2
s +

αsd2

d1 − d2

(d2 − d1)∆v2
s

= −
s∑
j=1

αjD
n2−s+2
t u2

j −
αsd2

d1 − d2

Dtv
2
s+1 − αsd2∆v2

s .

Since v2
s satisfies the equation �2v

2
s +Dtv

2
s+1 = 0 by (4.4.1), we obtain that

−αsDn2−s+2
t u2

s − αsd2∆v2
s = −αs(D2

t v
2
s + d2∆)v2

s

= αs�2v
2
s

= −αsDtv
2
s+1.

This implies that

�1y
1
0 = −

s−1∑
j=1

αjD
n2−s+2
t u2

j −
αsd2

d1 − d2

Dtv
2
s+1 − αsDtv

2
s+1

= −
s−1∑
j=1

αjD
n2−s+2
t u2

j − αs(
d2

d1 − d2

+ 1)Dtv
2
s+1

= −
s−1∑
j=1

αjD
n2−s+2
t u2

j −
αsd1

d1 − d2

Dtv
2
s+1.

As a consequence, using the definition v2
s−1 = Dn2−s+1

t u2
s−1, we know that y1

0

satisfies the equation

�1y
1
0 +

s−2∑
j=1

αjD
n2−s+2
t u2

j +
αsd1

d1 − d2

Dtv
2
s+1 + αs−1Dtv

2
s−1 = 0. (4.4.9)

Define by induction

y1
j = Dty

1
j−1 +

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k v
2
s+j−2k, 1 ≤ j ≤ n2 − s− 1. (4.4.10)

Let αj = 0 for j ∈ Z \ {1, 2, · · · , s}. We have the following lemmas, which are
proved afterwards.
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Lemma 4.4.3. y1
j (1 ≤ j ≤ n2 − s− 1) satisfies the equation

�1y
1
j +

s−2−j∑
k=−∞

αkD
n2−s+j+2
t u2

k +

j+1∑
k=0

αs−kd
j+1−k
1

(d1 − d2)j+1−kDtv
2
s+j+1−2k = 0. (4.4.11)

Remark 4.4.4.
∑s−2−l

k=−∞ αkD
n2−s+2
t u2

k is a sum of finite terms, since for k ≤ 0,
αk ≡ 0.

Let ycomp = Dty
1
n2−s−1 +

∑n2−s
k=0

αs−kd2d
n2−s−k
1

(d1−d2)n2−s+1−k v
2
n2−2k.

Lemma 4.4.5. ycomp satisfies the equation

�1ycomp =−
n2−s+1∑
k=1

αs−kd
n2−s+1−k
1

(d1 − d2)n2−s+1−kDtv
2
n2+1−2k −

2s−2−n2∑
k=−∞

αkD
2n2−2s+2
t u2

k

+

n2∑
k=1

an2+1−kαsd
n2+1−s
1

(d1 − d2)n2+1−s u
2
k +

αsd
n2+1−s
1

(d1 − d2)n2+1−sf.

(4.4.12)

Lemma 4.4.6. For ycomp, we have

ycomp = (−d1∆)n2−s+1u1
1

+

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lu2

j+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αs−kd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lu2

j+k+l.

(4.4.13)

Assume for the moment that these Lemmas are true and let us complete the
proof of Proposition 4.4.1. Define

F =−
n2−s+1∑
k=1

αs−kd
n2−s+1−k
1

(d1 − d2)n2−s+1−kDtv
2
s+j+1−2k −

2s−2−n2∑
k=−∞

αkD
2n2−2s+2
t u2

k

+

n2∑
k=1

an2+1−kαsd
n2+1−s
1

(d1 − d2)n2+1−s u
2
k +

αsd
n2+1−s
1

(d1 − d2)n2+1−sf.

(4.4.14)

Since
u2
k ∈ C0([0, T ], Hn2+1−k

Ω (∆D)) ∩ C1([0, T ], Hn2−k
Ω (∆D)),

we know that

D2n2−2s+2
t u2

k ∈ L1((0, T ), H0
Ω(∆D)), k ≤ 2s− 2− n2,
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which implies that F ∈ L1((0, T ), H0
Ω(∆D)). Now, we remark that by (4.4.4) and

(4.4.5), ycomp satisfies

ycomp|t=0 = Ũ0 ∈ H1
Ω(∆D),

∂tycomp|t=0 = Ũ1 ∈ H0
Ω(∆D).

Consequently, from (4.4.12), (4.4.14) and the fact that F ∈ L1((0, T ), H0
Ω(∆D)),we

conclude that ycomp ∈ C0([0, T ], H1
Ω(∆D)) ∩ C1([0, T ], H0

Ω(∆D)).

It only remains to prove Lemma 4.4.3, Lemma 4.4.5 and Lemma 4.4.6.

Proof of Lemma 4.4.3 and Lemma 4.4.5. We prove these lemmas by induction.
For y1

0, according to (4.4.9), we know that y1
0 satisfies (4.4.11) for j = 1. Assume

that for l < j, y1
l satisfies (4.4.11). Thus, using the definition of y1

j and the equation
for y1

j−1, we know that y1
j satisfies the following equation

�1y
1
j = Dt�1y

1
j−1 +

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k�1v
2
s+j−2k

= −
s−1−j∑
k=−∞

αkD
n2−s+j+2
t u2

k −
j∑

k=0

αs−kd
j−k
1

(d1 − d2)j−k
D2
t v

2
s+j−2k

+

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k�2v
2
s+j−2k +

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k (d2 − d1)∆v2
s+j−2k.

By simple observation, we know that

−
j∑

k=0

αs−kd
j−k
1

(d1 − d2)j−k
D2
t v

2
s+j−2k +

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k (d2 − d1)∆v2
s+j−2k

=

j∑
k=0

αs−kd
j−k
1

(d1 − d2)j−k
∂2
t v

2
s+j−2k +

j∑
k=0

αs−kd
j−k
1

(d1 − d2)j−k
(−d2∆)v2

s+j−2k

=

j∑
k=0

αs−kd
j−k
1

(d1 − d2)j−k
�2v

2
s+j−2k.

Therefore, we simplify the equation for y1
j ,

�1y
1
j = −

s−1−j∑
k=−∞

αkD
n2−s+j+2
t u2

k +

j∑
k=0

αs−kd
j−k
1

(d1 − d2)j−k
(

d2

d1 − d2

+ 1)�2v
2
s+j−2k

= −
s−1−j∑
k=−∞

αkD
n2−s+j+2
t u2

k +

j∑
k=0

αs−kd
j−k+1
1

(d1 − d2)j−k+1
�2v

2
s+j−2k.
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Using the equation �2v
2
s+j−2k = −Dtv

2
s+1+j−2k coming from (4.4.7), we obtain

�1y
1
j = −

s−1−j∑
k=−∞

αkD
n2−s+j+2
t u2

k −
j∑

k=0

αs−kd
j−k+1
1

(d1 − d2)j−k+1
Dtv

2
s+j−2k+1.

Now we look at the term αs−1−jD
n2−s+j+2
t u2

s−1−j. If j ≤ s− 1, we obtain

αs−1−jD
n2−s+j+2
t u2

s−1−j = αs−1−jDtv
2
s−1−j;

if j > s− 1, αs−1−j = 0. Hence, we have

�1y
1
j = −

s−2−j∑
k=−∞

αkD
n2−s+j+2
t u2

k −
j+1∑
k=0

αs−kd
j−k+1
1

(d1 − d2)j−k+1
Dtv

2
s+j−2k+1.

By induction, this implies that y1
j (1 ≤ j ≤ n2 − s− 1) satisfies the equation

�1y
1
j +

s−2−j∑
k=−∞

αkD
n2−s+j+2
t u2

k +

j+1∑
k=0

αs−kd
j+1−k
1

(d1 − d2)j+1−kDtv
2
s+j+1−2k = 0. (4.4.15)

Using the definition of ycomp, we obtain

�1ycomp = Dt�1y
1
n2−s−1 +

n2−s∑
k=0

αs−kd2d
n2−s−k
1

(d1 − d2)n2−s+1−k�1v
2
n2−2k.

Following the same procedure, we have the following equation

�1ycomp = −
2s−1−n2∑
k=−∞

αkD
2n2−2s+2
t u2

k +

n2−s∑
k=0

αs−kd
n2−s−k+1
1

(d1 − d2)n2−s−k+1
�2v

2
n2−2k.

Using the equation �2v
2
n2

=
∑n2

k=1 an2+1−ku
2
k + f coming from (4.4.7), we obtain

�1ycomp = −
2s−1−n2∑
k=−∞

αkD
2n2−2s+2
t u2

k +

n2−s∑
k=1

αs−kd
n2−s−k+1
1

(d1 − d2)n2−s−k+1
Dtv

2
n2−2k+1

+

n2∑
k=1

an2+1−kαsd
n2−s+1
1

(d1 − d2)n2−s+1
u2
k +

αsd
n2−s+1
1

(d1 − d2)n2−s+1
f.

Now look at the term α2s−1−n2D
2n2−2s+2
t u2

2s−1−n2
. If 2s − 1 − n2 ≤ 0, we know

that α2s−1−n2 ≡ 0. Otherwise, we know that D2n2−2s+2
t u2

2s−1−n2
= Dtv

2
2s−1−n2

.
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Consequently, we obtain the equation for ycomp:

�1ycomp =−
n2−s+1∑
k=1

αs−kd
n2−s+1−k
1

(d1 − d2)n2−s+1−kDtv
2
n2+1−2k −

2s−2−n2∑
k=−∞

αkD
2n2−2s+2
t u2

k

+

n2∑
k=1

an2+1−kαsd
n2+1−s
1

(d1 − d2)n2+1−s u
2
k +

αsd
n2+1−s
1

(d1 − d2)n2+1−sf,

which is exactly the equation (4.4.12).

Proof of Lemma 4.4.6. Recall the definition of ycomp,

ycomp = Dty
1
n2−s−1 +

n2−s∑
k=0

αs−kd2d
n2−s−k
1

(d1 − d2)n2−s+1−k v
2
n2−2k,

and the definition of y1
j (1 ≤ j ≤ n2 − s− 1),

y1
j = Dty

1
j−1 +

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k v
2
s+j−2k.

Therefore, by iteration, we have the following expression for ycomp

ycomp = Dn2−s
t y1

0 +

n2−s∑
j=1

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−kD
n2−s−j
t v2

s+j−2k. (4.4.16)

Using the definitions of y1
0 = v1

1 + αsd2

d1−d2
v2
s and v2

j = Dn2+1−j
t u2

j , 1 ≤ j ≤ n2 given
in (4.4.6), we simplify the formula above:

ycomp = D2n2−2s+2
t u1

1 +

n2−s∑
j=0

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−kD
2n2−2s−2j+2k
t u2

s+j−2k.

According to the equation D2
t u

1
1 = −d1∆u1

1 +
∑s

j=1 αju
2
j coming from (4.4.1), we

obtain

ycomp = D2n2−2s
t (−d1∆u1

1

+
s∑
j=1

αju
2
j) +

n2−s∑
j=0

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−kD
2n2−2s−2j+2k
t u2

s+j−2k

= (−d1∆)Dn2−s
t u1

1 +
s∑
j=1

αjD
n2−s
t u2

j

+

n2−s∑
j=0

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−kD
2n2−2s−2j+2k
t u2

s+j−2k.
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By iteration, we are able to obtain that

ycomp = (−d1∆)n2−s+1u1
1 +

n2−s∑
k=0

s∑
j=1

αj(−d1∆)kD2n2−2s−2k
t u2

j

+

n2−s∑
j=0

j∑
k=0

αs−kd2d
j−k
1

(d1 − d2)j+1−kD
2n2−2s−2j+2k
t u2

s+j−2k.

Now we introduce the following lemma to describe the term D2k
t u

2
j .

Lemma 4.4.7. Let u2
j be solutions to the system (4.4.1). If k + j ≤ n2, we have

D2k
t u

2
j =

k∑
l=0

(
k

l

)
(−d2∆)lu2

j+k−l. (4.4.17)

We shall prove this lemma in Appendix B. Now, we use this lemma to simplify
the formula of ycomp. In the term

∑n2−s
k=0

∑s
j=1 αj(−d1∆)kD2n2−2s−2k

t u2
j , since j ≤ s

and k ≥ 0, we know that n2 − s − k + j ≤ n2 − k ≤ n2. Thus, according to
Lemma 4.4.7, we obtain

D2n2−2s−2k
t u2

j =

n2−s−k∑
l=0

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lu2

j+l. (4.4.18)

On the other hand, in the term
∑n2−s

j=0

∑j
k=0

αs−kd2d
j−k
1

(d1−d2)j+1−kD
2n2−2s−2j+2k
t u2

s+j−2k, since
k ≥ 0, we know that (s + j − 2k) + (n2 − s − j + k) = n2 − k ≤ n2. Therefore,
according to Lemma 4.4.7, we obtain

D2n2−2s−2j+2k
t u2

s+j−2k =

n2−s−j+k∑
l=0

(
n2 − s− j + k

l

)
(−d2∆)n2−s−j+k−lu2

s+j−2k+l.

(4.4.19)
As a consequence, we obtain that

ycomp = (−d1∆)n2−s+1u1
1

+

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lu2

j+l

+

n2−s∑
j=0

j∑
k=0

n2−s−j+k∑
l=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k

(
n2 − s− j + k

l

)
(−d2∆)n2−s−j+k−lu2

s+j−2k+l.

(4.4.20)

139



4.4. PROOF OF THE SUFFICIENT PART OF ??

For the last term in the formula above, since αs−k = 0 for k ≥ s, we know that

n2−s∑
j=0

j∑
k=0

n2−s−j+k∑
l=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k

(
n2 − s− j + k

l

)
(−d2∆)n2−s−j+k−lu2

s+j−2k+l

=
s−1∑
k=0

n2−s∑
j=k

n2−s−j+k∑
l=0

αs−kd2d
j−k
1

(d1 − d2)j+1−k

(
n2 − s− j + k

l

)
(−d2∆)n2−s−j+k−lu2

s+j−2k+l

=
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lu2

j+k+l.

The last equality holds after a change of the sum index. Therefore, we obtain the
form for ycomp

ycomp = (−d1∆)n2−s+1u1
1

+

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lu2

j+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lu2

j+k+l.

(4.4.21)

We also have the similar theorem as we proved in the previous section:

Theorem 4.4.8. Given T > 0, suppose that:

1. (ω, T, pdi) satisfies GCC, i = 1, 2.

2. Ω has no infinite order of tangential contact with the boundary.

Then System (4.4.1) is exactly controllable in Hs
1 ×Hs

0.

As before, proving Theorem 4.4.8 is equivalent to proving the exact controlla-
bility of the following system:

�1v
1
1 +R(v2

1, · · · , v2
n2

) =
αsd

n2+1−s
1

(d1−d2)n2+1−sf1ω in (0, T )× Ω,

�2v
2
1 +Dtv

2
2 = 0 in (0, T )× Ω,

...
�2v

2
n2
−
∑n2

k=1 an2+1−kS−1
k (v2

k, · · · , v2
n2

) = f1ω in (0, T )× Ω,
v1

1 = 0, v2
1 = · · · = v2

n2
= 0 on (0, T )× ∂Ω, ,

(v1
1, v

2
1, · · · , v2

n2
)|t=0 ∈ L n2+1

1

(∂tv
1
1, ∂tv

2
1, · · · , ∂tv2

n2
)|t=0 ∈ L n2+1

0 ,

(4.4.22)
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with

R(v2
1, · · · , v2

n2
) =

n2−s+1∑
k=1

αs−kd
n2−s+1−k
1

(d1 − d2)n2−s+1−kDtv
2
s+j+1−2k

+

2s−2−n2∑
k=−∞

αkD
2n2−2s+2
t S−1

k (v2
k, · · · , v2

n2
)

+

n2∑
k=1

an2+1−kαsd
n2+1−s
1

(d1 − d2)n2+1−s S
−1
k (v2

k, · · · , v2
n2

).

Here we use the transform S given by

S


u1

1

u2
1

...
u2
n2

 =


v1

1

v2
1
...
v2
n2

 ,

where 
v1

1 = ycomp
v2

1 = Dn2−1
t u2

1,
...
v2
n2

= u2
n2
,

(4.4.23)

with

ycomp = (−d1∆)n2−s+1u1
1

+

n2−s∑
k=0

s∑
j=1

n2−s−k∑
l=0

αj

(
n2 − s− k

l

)
(−d1∆)k(−d2∆)n2−s−k−lu2

j+l

+
s∑
j=1

n2−2s+j∑
k=0

n2−s−k∑
l=0

αjd2d
k
1

(d1 − d2)k+1

(
n2 − s− k

l

)
(−d2∆)n2−s−k−lu2

j+k+l.

Remark that Proposition 4.3.2 together with (4.4.23) ensures that

(v1
1, v

2
1, . . . , v

2
n2

) ∈ C0([0, T ],L n2+1
1 ) ∩ C1([0, T ],L n2+1

0 ).

We use S−1 to denote the inverse transform given by

u1
1 = S−1

0 (v1
1, v

2
1, · · · , v2

n2
),

u2
1 = S−1

1 (v2
1, · · · , v2

n2
),

...
u2
n2−j = S−1

j (v2
n2−j, · · · , v

2
n2

), 0 ≤ j ≤ n2 − 1,
...
u2
n2

= S−1
n2

(v2
n2

) = v2
n2
.

(4.4.24)
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Then, we treat exactly the same way as we did in the proof of Proposition 4.3.2
to obtain the form of the inverse transform of S. There are two different cases.
For n2 = 2k + 1, which is an odd integer, we are able to obtain that

u2
2k+1 = v2

2k+1,

u2
2k = (−d2∆D)−1Dtv

2
2k + T (2k, 2k + 1)(−d2∆D)−1v2

2k+1,
...
u2

1 = (−d2∆D)−kv2
1 + T (1, 2)(−d2∆D)−k−1Dtv

2
2 · · ·

+T (1, 2k + 1)(−d2∆D)−2kv2
2k+1.

(4.4.25)

It is similar for the even integer n2 = 2k:
u2

2k = v2
2k,

u2
2k−1 = (−d2∆D)−1Dtv

2
2k−1 + T (2k − 1, 2k)(−d2∆D)−1v2

2k,
...
u2

1 = (−d2∆D)−kDtv
2
1 + T (1, 2)(−d2∆D)−kv2

2 · · ·+ T (1, 2k)(−d2∆D)1−2kv2
2k.

(4.4.26)
Here the coefficients {T (i, j)}1≤i<j≤n are uniquely determined by System (4.4.1),
but their exact value is not really important.

Remark 4.4.9. As explained in Remark 4.3.3, we are able to rewrite the system
(4.4.22) as follows:

(∂2
t − SDS−1∆ + SAS−1)V = S b̂f,

and we have

S b̂f =


αsd

n2+1−s
1

(d1−d2)n2+1−sf,

0,
...
0,
f

 .

Moreover, we could notice that both S and S−1 only involve Dt and (−∆D)k, k ∈ Z.

According to the Hilbert Uniqueness Method, we only need to prove the ob-
servability inequality

C

∫ T

0

∫
ω

∣∣∣∣ αsd
n2+1−s
1

(d1 − d2)n2+1−sw
1
1 + w2

n2

∣∣∣∣2 dxdt ≥ ||W (0)||2
L
n2+1
0 ×L

n2+1
−1

. (4.4.27)
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for any solution of the adjoint system:

�1w
1
1 = 0 in (0, T )× Ω,

�2w
2
1 + Λ1w

2
n2

+ Λ̃1w
1
1 = 0 in (0, T )× Ω,

�2w
2
2 +Dtw

2
1 + Λ2w

2
n2

+ Λ̃2w
1
1 = 0 in (0, T )× Ω,

...
�2w

2
n2

+Dtw
2
n2−1 + Λn2w

2
n2

+ Λ̃n2w
1
1 = 0 in (0, T )× Ω,

w1
1 = 0, w2

1 = · · · = w2
n2

= 0 on (0, T )× ∂Ω,

(4.4.28)

with initial conditions

(w1
1, w

2
1, · · · , w2

n2
)|t=0 ∈ (L2(Ω))n2+1 = L n2+1

0

(∂tw
1
1, ∂tw

2
1, · · · , ∂tw2

n2
)|t=0 ∈ (H−1

Ω (∆D))n2+1 = L n2+1
−1 ,

where the operators (Λj)1≤j≤n2 and (Λ̃j)1≤j≤n2 are uniquely determined by the
transform (4.4.23) and additionally are bounded operators in L2(Ω). As usual, we
divide the proof of the observability inequality (4.4.27) into two steps.

Remark 4.4.10. We are able to rewrite the adjoint system (4.4.28) as follows

(∂2
t − (S ′)−1DS ′∆ + (S ′)−1A∗S ′)W = 0.

Here the transform S ′ denotes the invertible transform between the adjoint systems.
Moreover, we could notice that both S ′ and (S ′)−1 only involve Dt and (−∆D)k, k ∈
Z.

Step 1: establish a relaxed observability inequality.

First, we can establish a relaxed observability inequality for the adjoint System
(4.4.28).

Proposition 4.4.11. For solutions of System (4.4.28), there exists a constant
C > 0 such that

||W (0)||2
L
n2+1
0 ×L

n2+1
−1

≤ C

(∫ T

0

∫
ω

∣∣∣∣ αsd
n2+1−s
1

(d1 − d2)n2+1−sw
1
1 + w2

n2

∣∣∣∣2 dxdt+ ||W (0)||2
L
n2+1
−1 ×L

n2+1
−2

)
.
(4.4.29)

Proof. We argue by contradiction. Suppose that the observability inequality (4.4.29)
is not satisfied. Thus, there exists a sequence (W k)k∈N the solutions of System
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(4.4.28) such that

||W k(0)||2
L
n2+1
0 ×L

n2+1
−1

= 1, (4.4.30)∫ T

0

∫
ω

∣∣∣∣ αsd
n2+1−s
1

(d1 − d2)n2+1−sw
1,k
1 + w2,k

n2

∣∣∣∣2 dxdt→ 0 as k →∞, (4.4.31)

||W k(0)||2
L
n2+1
−1 ×L

n2+1
−2

→ 0 as k →∞. (4.4.32)

By the continuity of the solution with respect to the initial data of System (4.3.27),
we know that the sequence (W k)k∈N is bounded in (L2((0, T )×Ω))n2+1 and more-
over, W k ⇀ 0 in (L2((0, T )×Ω))n2+1. We haveW k satisfying the following system

�w1,k
1 = o(1)H−1

Ω (∆D) in (0, T )× Ω,

�w2,k
1 = o(1)H−1

Ω (∆D) in (0, T )× Ω,

�w2,k
2 +Dtw

2,k
1 = o(1)H−1

Ω (∆D) in (0, T )× Ω,
...
�w2,k

n2
+Dtw

2,k
n2−1 = o(1)H−1

Ω (∆D) in (0, T )× Ω.

(4.4.33)

Hence, we obtain two microlocal defect measures µ
1
∈ M+ and µ

2
∈ M+ asso-

ciated with (w1,k
1 )k∈N and (W 2,k)k∈N respectively. From the definition in Proposi-

tion 4.2.6, we know that

∀A ∈ A, 〈µ
1
, σ(A)〉 = lim

k→∞
(Aw1,k

1 , w1,k
1 )L2 ,

〈µ
2
(i, j), σ(A)〉 = lim

k→∞
(Aw2,k

i , w2,k
j )L2 , 1 ≤ i, j ≤ 2.

Here µ
2

= (µ
2
(i, j))1≤i,j≤n2 is the matrix measure associated with the sequence

(W 2,k)k∈N = (w2,k
1 , · · · , w2,k

n2
)k∈N and moreover, w1,k

1 and w2,k
i is the extension by

0 across the boundary of Ω(1 ≤ i ≤ n2). As we already presented in the Subsec-
tion 4.3.2, the two measures are mutually singular in (0, T ) × Ω. Then provided
with ∫ T

0

∫
ω

∣∣∣∣ αsd
n2+1−s
1

(d1 − d2)n2+1−sw
1,k
1 + w2,k

n2

∣∣∣∣2 dxdt→ 0 as k →∞,

we obtain that for χ ∈ C∞0 ((0, T )× ω)

〈 αsd
n2+1−s
1

(d1 − d2)n2+1−sχw
1,k
1 ,

αsd
n2+1−s
1

(d1 − d2)n2+1−sχw
1,k
1 〉 → 0,

〈χw2,k
n2
, χw2,k

n2
〉 → 0, as k →∞.

Thus, we know that

µ
1
|(0,T )×ω = 0, and µ

2
(n2, n2)|(0,T )×ω = 0. (4.4.34)
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For µ
1
, since µ

1
is invariant along the along the general bicharacteristics of pd1 ,

combining with GCC, we know that µ
1
≡ 0. For µ

2
, we consider the other defini-

tion of the microlocal defect measure. From Proposition 4.2.8, we know that there
exists a measure µ2 ∈M+ such that

∀A ∈ A, 〈µ2, κ(σ(A))〉 = lim
k→∞

(AW 2,k,W 2,k)L2 . (4.4.35)

Here µ2 = (µ2(i, j))1≤i,j≤n2 is a matrix measure. Since µ
2
|Char(pd2 ) = µ2 µ2-almost

surely, we obtain that µ2(n2, n2)|(0,T )×ω = 0. As we already presented in the
Subsection 4.3.2, we would like to use Lemma 4.2.10. So we adapt this lemma
under our setting here.

Lemma 4.4.12. Assume that µ2 is the corresponding microlocal defect measure
defined by

∀A ∈ A, 〈µ2, κ(σ(A))〉 = lim
k→∞

(AW 2,k,W 2,k)L2 . (4.4.36)

for the sequence W 2,k = (w2,k
1 , · · · , w2,k

n2
)k∈N which satisfies the following system:

�w2,k
1 = o(1)H−1

Ω (∆D) in (0, T )× Ω,

�w2,k
2 +Dtw

2,k
1 = o(1)H−1

Ω (∆D) in (0, T )× Ω,
...
�w2,k

n2
+Dtw

2,k
n2−1 = o(1)H−1

Ω (∆D) in (0, T )× Ω.

(4.4.37)

If we denote the general bicharacteristic by s 7→ γ(s), then along γ(s) there exists
a continuous function s 7→M(s) such that M satisfies the differential equation:

d

ds
(M(s)) = iE(τ)M(s),M(0) = Id,

and µ2 is invariant along the flow associated with M , which means that

d

ds
(M∗µ2M) = 0.

Here we denote by E(τ) the matrix


0 τ 0 0

0 0
. . . 0

... . . . . . . τ
0 · · · 0 0

 .

Remark 4.4.13. For the differential equation satisfied by M and the form of the
matrix E, one can refer to [15, Section 3.2] for more details.
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Here, M has the form of


1 iτs · · · (iτs)n2−1

(n2−1)!

0 1
. . . ...

... . . . . . . iτs
0 · · · 0 1

, where τ is a nonzero

constant along the generalized bicharacteristic.

Let e1 =


1
0
...
0

, · · · , en2 =


0
...
0
1

 be the canonical basis for Rn2 . For any

point ρ0 ∈ supp(µ2), by the geometric control condition (GCC), we know that there
exists a unique general bicharacteristic s 7→ γ(s) such that γ(0) = ρ0. Moreover,
there exists ε > 0, sufficiently small, such that γ((−2ε, 2ε)) ⊂ π−1((0, T ) × ω).
Since µ2 is invariant along the flow associated with M , i.e. d

ds
(M∗µ2M) = 0, we

obtain that for any t0 ∈ (0, 2ε), we have

µ2(0) = M(t0)∗µ2(t0)M(t0).

Noticing that supp(µ2)(n2, n2) ∩ π−1((0, T ) × ω) = ∅ (which also implies that
µ2(t0)en2 = 0 by an already developed argument), we obtain that

M(−t0)∗µ2(0)M(−t0)en2 = µ2(t0)en2 = 0.

Hence, µ2(0)M(−t0)en2 = 0. Moreover, considering n − 1 times t1, . . . tn−1 such
that t0 < t1 < . . . < tn−1 < ε, the same argument leads to



µ2(0)M(−t0)en2 = 0,
µ2(0)M(−t1)en2 = 0,
µ2(0)M(−t2)en2 = 0,
...
µ2(0)M(−tn−1)en2 = 0.

(4.4.38)

From the expression of M , we obtain that {M(−ti)en2}i∈[|0,n−1|] is a basis of Rn

(its determinant is proportional to the Vandermonde determinant
∏

i<j(−ti+ tj)).
Hence, (4.4.38) implies that µ2(0) = 0. According to the arbitrary choice of
ρ0 ∈ supp(µ2), we are able to conclude that supp(µ2) = ∅, i.e. µ2 ≡ 0. Then,
we conclude that the relaxed observability inequality (4.4.29) holds for all the
solutions of System (4.4.28).
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Step 2: analysis on the invisible solutions

We first define for any T > 0 the set of invisible solutions from ]0, T [×ω

Nn2(T ) = {W = (w1,0
1 , w2,0

1 , · · · , w2,0
n2
, w1,1

1 , w2,1
1 , · · · , w2,1

n2
)t ∈ L n2+1

0 ×L n2+1
−1

such that the associated solution of System (4.4.28)

satisfies
αsd

n2+1−s
1

(d1 − d2)n2+1−sw
1
1(x, t) + w2

n2
(x, t) = 0,∀(x, t) ∈ (0, T )× ω}.

With the relaxed observability inequality of (4.4.29), we only need to prove the
following key lemma:

Lemma 4.4.14. Nn2(T ) = {0}.

Proof of Lemma 4.4.14. According to the relaxed observability inequality (4.4.29),
for W ∈ Nn2(T ), we obtain that

||W (0)||2
L
n2+1
0 ×L

n2+1
−1

≤ C||W (0)||2
L
n2+1
−1 ×L

n2+1
−2

. (4.4.39)

We know that Nn2(T ) is a closed subspace of L n2+1
0 ×L n2+1

−1 . By the compact em-
bedding L2(Ω)×H−1(Ω) ↪→ H−1(Ω)×H−2(Ω), we know thatNn2(T ) has a finite di-
mension. Then, we define the operator An2 to be the generator associated with Sys-
tem (4.4.28). We know that the solution (w1

1, w
2
1, · · · , w2

n2
, Dtw

1
1, Dtw

2
1, · · · , Dtw

n2
2 )t

can be written as 

w1
1

w2
1
...
w2
n2

Dtw
1
1

Dtw
2
1

...
Dtw

2
n2


= e−tAn2W .

It suffices to prove a unique continuation property for eigenfunctions of the op-
erator An2 . Let us take Φ = (Φ0,Φ1) = (φ0

1, · · · , φ0
n2+1, φ

1
1, · · · , φ1

n2+1) ∈ Nn2(T ),
satisfying {

An2Φ = λΦ,
d2

1

(d1−d2)2φ
0
1 + φ0

n2+1 = 0 in ω.
(4.4.40)

Then, it is equivalent to a the system{
(−D∆D + A∗)ϕ = λ2ϕ,

b̂∗ϕ|ω = 0.
(4.4.41)

147



4.5. SOME COMMENTS

Indeed, as explained in Remark 4.3.13, Φ and ϕ verify the relation ϕ = S ′(λ,∆)Φ
(where we replace formally Dt by λ). The study of (4.4.41) is totally similar to
the one of (4.3.57): using the analyticity, we know that b̂∗ϕ ≡ 0. Then, we obtain
that b̂∗(−D∆D + A∗)kϕ = 0, for any k ∈ N, i.e. ϕ ∈ Ker(K∗) = {0} , so that
ϕ ≡ 0, which concludes our proof.

4.4.2 Reformulation of the system in the general case

According to Proposition 4.1.8, we already know that the operator Kalman rank
condition is necessary for the exact controllability of System (4.1.1). In this section,
provided with the operator Kalman rank condition Ker(K∗) = {0}, we plan to
give a reformulation of System (4.1.1).

As a consequence of Proposition 4.1.6, we know that (A2, B) satisfies Kalman
rank condition. Therefore, applying Theorem 4.3.1, there exists an invertible ma-
trix P such that we reformulate System (4.1.1) into the following system

�1ũ
1
1 +

∑n2

j=1 α̃jũ
2
j = 0 in (0, T )× Ω,

�2ũ
2
1 + ũ2

2 = 0 in (0, T )× Ω,
...
�2ũ

2
n2−1 + ũ2

n2
= 0 in (0, T )× Ω,

�2ũ
2
n2
−
∑n2

j=1 an2+1−jũ
2
j = f1ω in (0, T )× Ω,

ũ1
1 = 0, ũ2

1 = · · · ũ2
n2

= 0 on (0, T )× ∂Ω,

(ũ1
1, ũ

2
1, · · · , ũ2

n2
)|t=0 = (ũ1,0

1 , ũ2,0
1 , · · · , ũ2,0

n2
) in Ω,

(∂tũ
1
1, ∂tũ

2
1, · · · , ∂tũ2

n2
)|t=0 = (ũ1,1

1 , ũ2,1
1 , · · · , ũ2,1

n2
) in Ω,

(4.4.42)
where ũ1

1 = u1
1, Ũ2 = PU2 and (α̃1, · · · , α̃n) = (α1, · · · , αn)P−1. Define s =

max{1 6 j 6 n2; α̃j 6= 0}. From Proposition 4.4.1, the appropriate state space
for (4.4.42) is Hs

1 × Hs
0. Moreover, by Theorem 4.4.8, under our hypotheses, we

have exact controllability of System (4.4.42) in the state space Hs
1 × Hs

0. This
immediately leads to the conclusion of Theorem 4.1.16.

4.5 Some comments

As we can see, the system (4.1.2) is only an example of a more general system as
follows: (∂2

t −D∆D)U + AU = b̂f1(0,T )(t)1ω(x) in (0, T )× Ω,
U = 0 on (0, T )× ∂Ω,
(U, ∂tU)|t=0 = (U0, U1) in Ω,

(4.5.1)
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with here

D =

(
d1Idn1 0

0 d2Idn2

)
n×n

, A =

(
A11 A12

A21 A22

)
n×n

,

b̂ =

(
b1

b2

)
n×m

, and f =

 f1
...
fm


m×1

(4.5.2)

where n = n1 + n2 and fj ∈ L2((0, T ) × ω), j = 1, 2, · · · ,m. In this very general
system (4.5.1), there are three different kinds of effective parts acting on the con-
trollability problem, that is, control functions and two different types of coupling.

The first part is obviously the control functions. The more control functions we
have, the more sophisticated structure we demand for the coupled matrix to obtain
the controllability. It is very related to the Brunovský Normal Form and when we
consider more than one control function, the standard Brunovský Normal Form
has more than one block in the coupling matrix, which increases the complicity
of the calculation to obtain an explicit formula of the compatibility conditions (as
we have seen, for instance, in (4.1.8)). However, when we deal with the case with
more than one control functions, we usually rely on the Brunovský Normal Form
to put the coupling matrix into the standard form and then, deal with the problem
block by block. This means that we first need to establish the result with only
one block, i.e. with only one control function. In the system (4.1.2), we choose
that b̃ only acts on the second part of the system. The reason is that if we give
both parts the effective control function, we cannot observe the influence of the
coupling term because of the regularity.

The second part we considered is the coupling with the same speed, which
corresponds to A11 and A22, and on the other hand, the third part is the coupling
effects of the different speeds, which corresponds to A12 and A21. As we can see in
the proof of the Theorem 4.1.16, coupling with same speed, we are able to observe
a phenomena of regularity increase by one with successive solutions. While we can
prove that the regularity gap between two coupled solutions with different speeds
is two (one can see in Subsection 4.2.2). This difference gives us the motivation
to consider that the simplest example of coupled wave system containing the two
different coupling effects, i.e. the system (4.1.2). We try to use this example to
analyse the different influence of these two types of coupling terms. When one

introduces the fully coupling matrix A =

(
A11 A12

A21 A22

)
n×n

, it is complicated to

analyse the two different types of coupling. Because they are combined too closely,
it is difficult to separate them. From a technical point of view, it seems very hard
to derive an appropriate normal form similar to Brunovský form to obtain the
compatibility conditions and the appropriate state space.
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4.6 Appendix I: On the operator Kalman rank con-
dition

Proof of Proposition 4.1.6. Let λ ∈ σ(−∆D) andK(λ) = [(λD+A)|b̂] ∈Mn(R)
(remind that b̂ = t(0, b) ∈ Rn). Firstly, we compute the form of the matrix K(λ)
by induction.

K(λ) =

(
Sn−1(λ) · · · Sj(λ) · · · A1b 0

(d2λ+ A2)n−1b · · · (d2λ+ A2)jb · · · (d2λ+ A2)b b

)
. (4.6.1)

The general term Sj(λ), 1 ≤ j ≤ n− 1 is defined by

Sj(λ) = A1

(
j−1∑
k=0

dk1λ
k(d2λ+ A2)j−1−k

)
b. (4.6.2)

Since the rank of a matrix is invariant under elementary operations on the columns
(that we will shorten in column transformation in what follows), it is easy to see
that rank(K(λ)) = rank(K̃(λ)), where

K̃(λ) =

(
S̃n−1(λ) · · · S̃j(λ) · · · A1b 0

An−1
2 b · · · Aj2b · · · A2b b

)
, (4.6.3)

with

S̃j(λ) = A1

(
j−1∑
k=0

(d1 − d2)kλkAj−1−k
2

)
b. (4.6.4)

Let us first prove the necessity of the conditions. Suppose that n1 > 1 and
let us prove that the Kalman matrix K(λ) is not of full rank. We take the n1-th
column of the matrix K̃(λ), i.e. (

S̃n2(λ)
An2

2 b

)
.

Let χ(X) = Xn2 +
∑n2−1

j=0 ajX
j be the characteristic polynomial of the matrix A2.

By the Cayley-Hamilton Theorem, An2
2 = −

∑n2−1
j=0 ajA

j
2.
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By using an adequate column transformation, we can put the n1-th column
into the form (

Tn2(λ)
0

)
, (4.6.5)

where Tn2(λ) = S̃n2(λ) +
∑n2−1

j=1 ajS̃j(λ). By (4.6.4),

n2−1∑
j=1

ajS̃j(λ) =

n2−1∑
j=1

ajA1

(
j−1∑
k=0

(d1 − d2)kλkAj−1−k
2

)
b

= A1

(
n2−2∑
k=0

n2−1∑
j=k+1

aj(d1 − d2)kλkAj−1−k
2

)
b.

Using the expression of S̃n2(λ) given in (4.6.4), we obtain that

Tn2(λ) = S̃n2(λ) +

n2−1∑
j=1

ajS̃j(λ)

= A1

(
n2−1∑
k=0

(d1 − d2)kλkAj−1−k
2

)
b+ A1

(
n2−2∑
k=0

n2−1∑
j=k+1

aj(d1 − d2)kλkAj−1−k
2

)
b

= A1

(
n2−2∑
k=0

(d1 − d2)kλk

(
An2−1−k

2 +

n2−1∑
j=k+1

ajA
j−1−k
2

)
+ (d1 − d2)n2−1λn2−1

)
b,

i.e.

Tn2(λ) = A1

(
n2−2∑
k=0

(d1 − d2)kλk
n2∑

j=k+1

ajA
j−1−k
2 + (d1 − d2)n2−1λn2−1

)
b. (4.6.6)

Here and hereafter, we use the notation an2 = 1 in order to obtain a clean from.
Now, we take the (n1 − 1)−th column of the matrix K̃(λ), i.e.

(
S̃n2+1(λ)
An2+1

2 b

)
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Again using the characteristic polynomial of the matrix A2, we obtain that

An2+1
2 = −A2

n2−1∑
j=0

ajA
j
2

= −
n2−2∑
j=0

ajA
j+1
2 − an2−1A

n2
2

= −
n2−2∑
j=0

ajA
j+1
2 + an2−1

n2−1∑
j=0

ajA
j
2

=

n2−1∑
j=1

(ajan2−1 − aj−1)Aj2 + an2−1a0.

By applying an adequate column transformation, we can put the (n1 − 1)-th
column into the form: (

Tn2+1(λ)
0

)
,

where Tn2+1(λ) satisfies

Tn2+1(λ) = S̃n2+1(λ)−
n2−1∑
j=1

(ajan2−1 − aj−1)S̃j(λ)

= A1

(
n2∑
k=0

(d1 − d2)kλkAn2−k
2

)
b

−
n2−1∑
j=1

(ajan2−1 − aj−1)A1

(
j−1∑
k=0

(d1 − d2)kλkAj−1−k
2

)
b

= A1

(
n2∑
k=0

(d1 − d2)kλkAn2−k
2

)
b

− A1

(
n2−2∑
k=0

n2−1∑
j=k+1

(ajan2−1 − aj−1)(d1 − d2)kλkAj−1−k
2

)
b

= A1

(
n2−2∑
k=0

(d1 − d2)kλkAn2−k
2 + (d1 − d2)n2λn2 + (d1 − d2)n2−1λn2−1A2

)
b

+ A1

(
n2−2∑
k=0

n2−1∑
j=k+1

aj−1(d1 − d2)kλkAj−1−k
2

−an2−1

n2−2∑
k=0

n2−1∑
j=k+1

aj(d1 − d2)kλkAj−1−k
2

)
b.
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Now consider the sum

n2−2∑
k=0

(d1 − d2)kλkAn2−k
2 +

n2−2∑
k=0

n2−1∑
j=k+1

aj−1(d1 − d2)kλkAj−1−k
2

=

n2−2∑
k=1

(d1 − d2)kλk

(
An2−k

2 +

n2−1∑
j=k+1

aj−1A
j−1−k
2

)
+ An2

2 +

n2−1∑
j=1

aj−1A
j−1
2

=

n2−2∑
k=1

(d1 − d2)kλk

(
n2+1∑
j=k+1

aj−1A
j−1−k
2

)
−

n2−1∑
j=0

ajA
j
2

+

n2−1∑
j=1

aj−1A
j−1
2 −

n2−2∑
k=1

(d1 − d2)kλkan2−1A
n2−1−k
2

=

n2−2∑
k=1

(d1 − d2)kλk

(
n2+1∑
j=k+1

aj−1A
j−1−k
2

)
−

n2−1∑
j=0

ajA
j
2

+

n2−1∑
j=1

aj−1A
j−1
2 −

n2−2∑
k=1

(d1 − d2)kλkan2−1A
n2−1−k
2

=

n2−2∑
k=1

(d1 − d2)kλk

(
n2+1∑
j=k+1

aj−1A
j−1−k
2

)
− an2−1A

n2−1
2

−an2−1

n2−2∑
k=1

(d1 − d2)kλkAn2−1−k
2

=

n2−2∑
k=1

(d1 − d2)kλk

(
n2+1∑
j=k+1

aj−1A
j−1−k
2

)
− an2−1

n2−2∑
k=0

(d1 − d2)kλkAn2−1−k
2 .
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Therefore, we obtain

Tn2+1(λ) = A1

(
n2−2∑
k=1

(d1 − d2)kλk
n2+1∑
j=k+1

aj−1A
j−1−k
2

)
b

+ A1

(
−an2−1

n2−2∑
k=0

(d1 − d2)kλkAn2−1−k
2 + (d1 − d2)n2λn2

+(d1 − d2)n2−1λn2−1A2

)
b+ A1

(
−an2−1

n2−2∑
k=0

n2−1∑
j=k+1

aj(d1 − d2)kλkAj−1−k
2

)
b

= A1

(
n2−2∑
k=1

(d1 − d2)kλk
n2+1∑
j=k+1

aj−1A
j−1−k
2 + (d1 − d2)n2λn2

)
b

+A1

(
(d1 − d2)n2−1λn2−1A2 − an2−1

n2−2∑
k=0

n2∑
j=k+1

aj(d1 − d2)kλkAj−1−k
2

)
b.

Then, we aim to find a connection between the terms Tn2+1(λ) and Tn2(λ). By
calculation, we obtain

(d1 − d2)λTn2(λ) = A1

(
n2−2∑
k=0

(d1 − d2)k+1λk+1

n2∑
j=k+1

ajA
j−1−k
2 + (d1 − d2)n2λn2

)
B

= A1

(
n2−2∑
k=1

(d1 − d2)kλk
n2∑
j=k

ajA
j−k
2 + (d1 − d2)n2λn2

)
B

+ (d1 − d2)n2−1λn2−1A1A2B

= Tn2+1(λ) + A1

(
an2−1

n2−2∑
k=0

n2∑
j=k+1

aj(d1 − d2)kλkAj−1−k
2

)
B

= Tn2+1(λ) + an2−1Tn2(λ).

Hence, we know that Tn2+1(λ) = ((d1 − d2)λ− an2−1)Tn2(λ), which means that
the two columns (

Tn2(λ)
0

)
and

(
Tn2+1(λ)

0

)
are linearly dependent. This means that(

S̃n2(λ)
An2

2 b

)
and

(
S̃n2+1(λ)
An2+1

2 b

)
are linearly dependent. By the expression of K̃(λ) given in (4.6.3) and the definition
of S̃j given in (4.6.4), we deduce that all the j-th columns of K̃(λ), for j 6 n1,
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are linearly dependent. We deduce that K̃(λ) is of rank less that n − n1 + 1 =
n2 + 1. This is in contradiction with the fact that K̃(λ) ∈ Mn(R) is of full rank
n = n1 + n2 > n2 + 1 since we assumed that n1 > 1. So we deduce that n1 = 1.

Concerning the two other conditions, remark that the first column of K̃(λ) can
be changed by a previously introduced column transformation into (4.6.5), where
Tn2(λ) verifies (4.6.6). We deduce that the rank of K(λ) is equal to the rank of
the matrix (

Tn2(λ) S̃n2−1(λ) · · · S̃j(λ) · · · A1b 0

0 An2−1
2 · · · Aj−1

2 b · · · A2b b

)
.

This matrix is of full rank n = n2 + 1 (if and) only if Tn2(λ) 6= 0 (which gives
(4.1.4) thanks to (4.6.6)) and

(
An2−1

2 · · · Aj−1
2 b · · · A2b b

)
∈Mn2,n2(R)

is of full rank n2, which is exactly meaning that (A2, b) verifies the usual Kalman
rank condition.

The sufficiency of the three conditions given in Proposition 4.1.6 is also straight-
forward, by the same arguments.

4.7 Appendix II: Proof of Lemma 4.4.7

We first look at u2
n2
. Since j+k ≤ n2, we know for j = n2, the conclusion is trivial.

For 1 ≤ j ≤ n2 − 1, we argue by induction. When k = 0, the conclusion holds for
sure. Assume that

D2k−2
t u2

j =
k−1∑
l=0

(
k − 1

l

)
(−d2∆)lu2

j+k−1−l. (4.7.1)

Then for D2k
t u

2
j , we know that

D2k
t u

2
j = D2

tD
2k−2
t u2

j

=
k−1∑
l=0

(
k − 1

l

)
(−d2∆)lD2

t u
2
j+k−1−l.

(4.7.2)
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Using the equation D2
t u

2
j+k−1−l = −d2∆u2

j+k−1−l + u2
j+k−l, we obtain that

D2k
t u

2
j =

k−1∑
l=0

(
k − 1

l

)
(−d2∆)l+1u2

j+k−1−l +
k−1∑
l=0

(
k − 1

l

)
(−d2∆)lu2

j+k−l

=
k∑
l=1

(
k − 1

l − 1

)
(−d2∆)lu2

j+k−l +
k−1∑
l=0

(
k − 1

l

)
(−d2∆)lu2

j+k−l

=
k−1∑
l=1

(

(
k − 1

l − 1

)
+

(
k − 1

l

)
)(−d2∆)lu2

j+k−l + (−d2∆)ku2
j + u2

j+k.

(4.7.3)

Since (
(
k−1
l−1

)
+
(
k−1
l

)
) =

(
k
l

)
, we obtain the conclusion.
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Résumé : Dans cette thèse, nous étudions les 
théories étroitement liées du contrôle et les 
propriétés de la continuation unique, pour des 
équations et systèmes des ondes linéaires.  
Nous avons étudié la contrôlabilité simultanée des 
systèmes des ondes dans un domaine ouvert de ℝ𝑑𝑑 . 
Nous obtenons un résultat de contrôlabilité partielle 
sur un espace co-dimensionnel fini pour des 
équations d’onde couplées par une seule fonction de 
contrôle. Pour la propriété de continuation unique 
des fonctions propres, nous avons donné un contre-
exemple pour montrer que dans certaines métriques, 
la propriété de continuation unique n’est pas vraie. 
De plus, nous avons étudié différentes conditions 
pour garantir la propriété de continuation unique. 
Nous avons étudié également notre résultat au cas 
de coefficients constants et éventuellement de 
fonctions de contrôle multiples. Dans ce contexte, 
nous avons prouvé que la propriété de contrôlabilité 
est équivalente à une condition de rang de Kalman 
appropriée. 

Nous avons étudié un problème de contrôlabilité 
exact dans un domaine ouvert Ω de ℝ𝑑𝑑 , pour un 
système des ondes couplées, avec des vitesses 
différentes et une seule commande agissant sur 
une sous-ensemble ouvert 𝜔𝜔 satisfaisant la 
condition de contrôle géométrique et sur une seule 
vitesse. Les actions pour les équations des ondes 
avec la deuxième vitesse sont obtenues par un 
terme decouplage. Tout d’abord, nous 
construisons des espaces d’états appropriés avec 
desconditions de compatibilité associées à la 
structure de couplage. Deuxièmement, dans ces 
espaces bien préparés, nous prouvons que le 
système des ondes couplées est exactement 
contrôlable si et seulement si la structure de 
couplage satisfait à une condition de rang de 
Kalman de l’opérateur. 
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Abstract: We study the simultaneous controllability 
of wave systems in an open domain of ℝ𝑑𝑑 .  We obtain 
a partial controllability result on a finite co-
dimensional space for wave equations coupled by a 
single control function. For the unique continuation 
property of eigenfunctions, we construct a 
counterexample to show that in some metrics, the 
unique continuation property does not hold. 
Moreover, we study different conditions to ensure 
the unique continuation property. We also extend 
our result to the case of constant coefficients and 
possibly multiple control functions. In this context, 
we prove the controllability property is equivalent to 
an appropriate Kalman rank condition. 

We also consider an exact controllability problem 
in a smooth bounded domain Ω  of ℝ𝑑𝑑 , for a 
coupled wave system, with different speeds and a 
single control acting  on an open subset 𝜔𝜔 
satisfying the Geometric Control Condition and on 
one speed only. Actions for the wave equations 
with the second speed are obtained through a 
coupling term. Firstly, we construct appropriate 
state spaces with compatibility conditions 
associated with the coupling structure. Secondly, in 
these well-prepared spaces, we prove that the 
coupled wave system is exactly controllable if and 
only if the coupling structure satisfies an operator 
Kalman rank condition. 
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